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Dynamic buckling may occur when a load is rapidly applied to, or removed from, an elastic object at rest.
In contrast to its static counterpart, dynamic buckling offers a wide range of accessible patterns depending
on the parameters of the system and the dynamics of the load. To study these effects, we consider
experimentally the dynamics of an elastic ring in a soap film when part of the film is suddenly removed.
The resulting change in tension applied to the ring creates a range of interesting patterns that cannot be
easily accessed in static experiments. Depending on the aspect ratio of the ring’s cross section, high-mode
buckling patterns are found in the plane of the remaining soap film or out of the plane. Paradoxically, while
inertia is required to observe these nontrivial modes, the selected pattern does not depend on inertia itself.
The evolution of this pattern beyond the initial instability is studied experimentally and explained through
theoretical arguments linking dynamics to pattern selection and mode growth. We also explore the
influence of dynamic loading and show numerically that, by imposing a rate of loading that competes with
the growth rate of instability, the observed pattern can be selected and controlled.
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Introduction.—A striking feature of elastic buckling is
the appearance of wrinkle patterns with a well-defined
wavelength; these regular patterns have found a range of
applications in the design of structures across length scales
[1,2], as well as in the measurement of material properties
[3,4]. While compression is required to induce buckling,
the wavelength of static wrinkle patterns emerges from a
trade-off between an object’s resistance to bending and a
resistance to out-of-plane displacement [5]. The resulting
balance governing pattern formation is therefore usually
established by the material properties of the system alone,
with few means to change the pattern formed without
changing material properties. As a concrete example,
consider the compression of a stiff, thin sheet attached
to a soft substrate; the wavelength of the resulting wrinkles
is set by the ratio of the two elastic moduli, together with
the thickness of the thin sheet [3]—while a compressive
force is required to cause buckling, the wrinkling wave-
length varies relatively weakly with the applied load in such
static scenarios [6].
Dynamic buckling is, however, known to give an

alternative route to pattern selection [7–9]. For example,
when stretched and released, a rubber band buckles with a
well-defined wavelength [10,11], as does a rubber sheet
subject to a normal impact [12], while impacting a brittle
rod at one end leads to the formation of fragments with
well-defined sizes [8]. In each of these cases, there is no
resisting substrate, but the compressive force within the
object F plays a similar role. However, in each of these
scenarios, F is not directly controlled and must be

determined; moreover, F evolves along with buckling
[8,12,13], further complicating the problem. In this Letter,
we present an experimental system that allows a more
direct probe of dynamic buckling.
Experiment.—Our experimental system consists of an

elastic ring of inner and outer radii Rin and Rout, respec-
tively, thickness h, and Young’s modulus E placed within a
soap film of surface tension γ (Fig. 1). With soap film
filling the inner r < Rin and outer r > Rout voids, the ring is

FIG. 1. General principle of the experiment: a closed elastic
object (a ring or annulus) is held within a soap film. At t ¼ 0, the
outer soap film is broken allowing the object, with inner soap film
intact, to fall freely. The unbalanced surface tension force from
the inner soap film causes the object to buckle dynamically; this
motion is captured by a high-speed camera.
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in equilibrium, with a uniform and isotropic tension T in ¼
Tout ¼ γ throughout. However, if the outer soap film is
broken (keeping the inner soap film intact) [14], then
Tout ¼ 0, with T in > 0 unbalanced, pulling the ring inward.
With stiffer boundaries, globally nonflat static solutions
are known to exist [15,16]; instead of these, we observe
relatively high mode number buckling, n > 2. Snapshots of
buckling (Fig. 2; see also Supplemental Material [17])
illustrate that the form of instability depends on the geometry
of the ring: for an elastic ring of square cross section (i.e.,
Rout − Rin ¼ h), instability occurs via in-plane buckling,
while for a wide, but thin, ring with Rout − Rin ≫ h (termed
an annulus hereafter), instability occurs as out-of-plane
wrinkling. Here we report the results of two sets of experi-
ments: (i) with elastic rings, of square cross section 0.5 ≤
h ≤ 1 mm and inner radius 17.5 ≤ Rin ≤ 32 mm, and
(ii) with elastic annuli, of thickness 43≤h≤210 μm and
inner and outer radii 3≤Rin≤25 and 9≤Rout≤35mm,
respectively. These elastic structures were fabricated by
casting and spin coating Polyvinyl Siloxane (Elite Double
8, 22 and 32, Zhermack, with Young’s modulus 37 ≤
E ≤ 800 kPa, measured via indentation, and Poisson ratio
ν ¼ 0.5); the surface tension of the soap film was measured,
using a Wilhelmy plate, to be γ ¼ 26.5� 2.5 mNm−1.
The patterns observed dynamically are qualitatively

similar to those observed in the analogous static systems:
for a thin-walled elastic cylinder of infinite length (or a
ring of rectangular cross section) subject to an externally
applied pressure, it is known [7,18,19] that the pressure at
which buckling occurs is pcollapse ¼ 3B=R3

in with B ¼
Eh3=12 its bending stiffness. Just above this collapse

pressure, the static system adopts a figure-of-eight shape,
ultimately leading to self-contact [20,21]. While other
higher modes of instability exist, they have only been
observed by the imposition of an additional breaking of
symmetry, e.g., via confinement with a polygonal boundary
of the desired mode number [22]. For thin, unconfined
elastic annuli, static wrinkling patterns with higher modes
of instability are common [4,5,23,24], but require two
opposing (though not, in general, equal) tensions to be
applied: when Tout=T in ≪ 1 in these static systems, the
annulus breaks its gross axisymmetry by forming a
lenticular or “stadium” shape [24]. Since the corresponding
static scenarios lead to instability with n ¼ 2, the obser-
vation in Fig. 2 of patterns with mode number n > 2 is
suggestive of a dynamic phenomenon.
Theory and results.—The essential mechanism of

dynamic buckling can be understood by considering a
one-dimensional beam of bending stiffness B and density ρ
that is aligned along the x axis [7]. Small beam deflections
ζðx; tÞ, caused by a constant imposed compressive force per
unit length F , satisfy [25]

ρh
∂2ζ

∂t2 ¼ −B
∂4ζ

∂x4 − F
∂2ζ

∂x2 : ð1Þ

Neglecting boundary conditions [7], one finds that the
growth rate σ of a perturbation with wave number k
satisfies the dispersion relation

ρhσ2 ¼ −Bk4 þ Fk2: ð2Þ

FIG. 2. Experimental snapshots from the dynamic buckling of an elastic (a) ring (h ¼ 1 mm ¼ Rout − Rin, Rin ¼ 23.5 mm,
E ¼ 42 kPa) and (b) annulus (h ¼ 110 μm, Rin ¼ 25 mm, Rout ¼ 34 mm, E ¼ 200 kPa) under the action of an unbalanced surface
tension T in. Images are shown at various intervals of time after the bursting of the outer soap film (see Supplemental Material [17]).
In (a) the dimensionless pressure p̃ring ¼ T inR3

in=ðBhÞ ¼ 98, while in (b) the dimensionless pressure p̃ann ¼ T inR2
in=B ¼ 528 and

Rout=Rin ¼ 1.36, with B the bending stiffness; our linear stability analysis predicts a most unstable mode number n ¼ 7 and n ¼ 30 in
(a) and (b), respectively.
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From this dispersion relation, it is clear that all modes with
wave number 0 < k < ðF=BÞ1=2 are linearly unstable and,
further, that the fastest growing mode has k ¼ k� ¼
½F=ð2BÞ�1=2 with growth rate σmax ¼ ½F 2=ð4BρhÞ�1=2 ¼
k2�ðB=ρhÞ1=2.
Variants of the above mechanism have been studied

previously, including overdamped motion with a spatially
varying compression [26], as well as the crucial role of
imperfections [27] and plastic deformation [7,28] in many
engineering applications. For the dynamic buckling of a
ring, previous work has established the unstable mode
numbers [29], but here we focus on understanding the
mode number observed, as well as the evolution beyond
the onset of instability while the system remains elastic. To
relate our ring experiment to the dynamic buckling of a rod
just discussed, we note that the tension applied by the inner
soap film T in ¼ γ behaves as a thickness-averaged pressure
p ¼ T in=h, which, in combination with the ring curvature,
induces an in-plane compression F ¼ pRin (the analog of
Laplace’s law [30]) within the ring. Neglecting other effects
of the ring curvature, we expect that the observed wave-
length of instability λ ¼ 2π=k� ¼ 23=2π½B=ðpRinÞ�1=2, or,
equivalently, the number of buckles

n ¼ Rink� ¼ 2−1=2
�
T inR3

in

Bh

�
1=2

¼
�
p̃ring

2

�
1=2

; ð3Þ

where p̃ring ¼ T inR3
in=ðBhÞ is a dimensionless measure

of the strength of the soap film’s surface tension to the
ring’s bending stiffness [15,16]. This result is in reasonable
agreement with the experimental results shown in Fig. 3(a)
[31] and is distinct from the λ ∼ h scaling observed in
rubber band recoil [10]. A more detailed model, incorpo-
rating the full effects of the ring curvature [32], gives nmax
indistinguishable from the simplified result (3) for n ≳ 2.
The situation for an annulus (Rout − Rin ≫ h) is more

involved since the stress varies spatially. While wrinkles
remain small, we expect the state of stress to remain close
to that of the planar Lamé problem [24]; in particular, the
radial and hoop stresses

Σrr;θθ ¼ −
T in

R2
out=R2

in − 1

�
1 ∓ R2

out

r2

�
: ð4Þ

Note that the radial stress is tensile Σrr > 0 and the hoop
stress compressive Σθθ < 0, throughout the annulus Rin <
r < Rout. Applying the result k� ¼ ðF=2BÞ1=2 locally with
F ¼ −ΣθθðrÞ gives an expected number of wrinkles at the
inner edge (see Supplemental Material [17])

nðRinÞ ¼
�
T inR2

in

B

�
1=2

�
R2
out=R2

in þ 1

2ðR2
out=R2

in − 1Þ
�

1=2

: ð5Þ

The result in (5) may bewritten as n ¼ p̃1=2
annfðRout=RinÞwith

the appropriate dimensionless pressure p̃ann ¼ T inR2
in=B and

the effect of the width of the annulus characterized by the
dimensionless function fðxÞ ¼ ½ðx2 þ 1Þ=2ðx2 − 1Þ�1=2.
Experimental results with 8≲ p̃ann ≲ 900 show a good
collapse when np̃−1=2

ann is plotted as a function of Rout=Rin
[Fig. 3(b)]; moreover, the dependence on Rout=Rin is close
to that expected from (5) (solid curve). Interestingly, as
Rout − Rin → h the expression in (5) converges to (3), even
though the modes of instability are different (in-plane
buckling versus out-of-plane wrinkling).
Crucially, the results of (3) and (5) are very different

from the corresponding quasistatic situations in which
twofold symmetry has been reported [21,24]. The key
ingredient that distinguishes static scenarios from those
considered here is the presence of the elastic object’s
inertia. Given this importance of inertia in generating an
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FIG. 3. Experimentally observed mode numbers for dynamic
buckling of a ring within a soap film. (a) Experimental results for
an elastic ring (points), together with the prediction of the
simplified linear stability analysis (3) (line). (Here, circles denote
experiments for which n is measured around the whole ring;
triangles denote experiments for which n is inferred from the
wavelength of instability at onset [31].) (b) Experimental results
for an elastic annulus (points), show that the rescaled mode
number np̃−1=2

ann depends on the width of the annulus Rout=Rin, as
predicted by (5) (solid curve). (Here data points are colored by the
value of p̃ann ¼ T inR2

in=B, as in the inset color bar; p̃ann is used to
rescale n.)
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instability qualitatively different from the static scenario, it
seems paradoxical that the inertia itself does not appear to
play a role in the final mode selection [Eqs. (3) and (5) are
independent of the object’s density ρ]. To understand this
paradox, we note from (2) that the growth rate of the fastest
growing mode σmax ¼ σðk�Þ ¼ k2�½B=ðρhÞ�1=2, does depend
on inertia. Our experiments and theoretical arguments
assume that the unbalanced tensile load is applied very
fast compared to the associated timescale of instability.
We therefore hypothesize that imposing the applied load at
different rates might give rise to additional control over the
observed instability mode, but begin by first measuring the
growth rate of instability experimentally.
For an elastic ring, the growth rate of the most unstable

mode is

σmax ¼
�

B
ρhR4

in

�
1=2

× n2max ≈
�

B
ρhR4

in

�
1=2 p̃ring

2
; ð6Þ

when p̃ring ≫ 1: for fixed material properties, the growth
rate of instability increases with dimensionless pressure.
To measure the growth rate of instability σ experimentally,
we monitor the area of the central hole enclosed by the ring
AðtÞ, which decreases during the experiment. A weakly
nonlinear analysis [32] shows that the change in this area
from its initial value, A0 ¼ πR2

in, initially grows at twice the
growth rate of instability, i.e., that

A0 − AðtÞ
A0

∼ expð2σmaxtÞ ð7Þ

for σmaxt ≪ 1.
Figure 4 shows the evolution of the experimentally

measured relative area change, together with numerical
results from a fully nonlinear model [32] and the prediction
of (7). Both experiments and numerical results show the
growth rate expected from (7) at very early times and,
further, that nonlinear effects [signified by significant
deviations from (7)] become important for smaller values
of σmaxt with larger p̃ring—a result that is also predicted by
weakly nonlinear analysis [32].
Having confirmed that the growth rate predicted from

linear stability analysis corresponds to that measured
experimentally, we use numerical simulations to investigate
the effect of increasing the compressive force F dynami-
cally. The maximum growth rate from (2), σmax ¼
½F 2=ð4BρhÞ�1=2, shows that the intrinsic timescale of
instability increases with applied load, so one might expect
that at early times (small load) a low mode number is
excited, but grows slowly—before it has grown appreci-
ably, the compression has increased and a new fastest
growing mode emerges, which grows faster, rapidly over-
taking the earlier lower mode. Since our earlier analyses
have shown that ring curvature has minimal effects in the
early stages of instability, we test this possibility with

numerical simulations of the one-dimensional beam
equation (1) for a beam of length L with pinned boundary
conditions [ζð�L=2;tÞ¼ ζxxð�L=2;tÞ¼0] and a Gaussian
initial condition, subject to a time-dependent compressive
force

F ðtÞ ¼ F 0t̃β; ð8Þ

with t̃ ¼ t × ½B=ðρhÞ�1=2ðL=2πÞ−2 the dimensionless time.
The exponent β describes the rate of loading: β → 0

corresponds to the step function loading assumed so far,
and β ¼ 1 to constant ramping rate. Numerical results for
the mode number observed at t̃ ¼ 1 are shown in Fig. 5
for a range of dimensionless maximum compressions
F̃ 0 ¼ F 0L2=ð4π2BÞ as a function of β. Each value of
F̃ 0 gives a different mode number even if imposed as a step
function (see inset of Fig. 5); Fig. 5 therefore shows results
normalized by nmax ¼ ðF̃ 0=2Þ1=2 leading to good collapse
for large n.
To understand this behavior qualitatively, we estimate

the dimensionless time t̃form at which the pattern observed
at t̃ ¼ 1 is formed; we do this by requiring the argument
of the exponential in our linear perturbation at t̃form,
σ½F̃ ðt̃formÞ� · t̃form, be comparable to that at the time of
observation, σðF̃ 0Þ · 1, i.e., ðF̃ 0t̃

β
formÞ · t̃form ¼ aF̃ 0 for

some constant of proportionality a; we find t̃form ¼
a1=ðβþ1Þ and, using n ¼ ½F̃ ðt̃formÞ=2�1=2,
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100

FIG. 4. The growth rate of instability in an elastic ring is
observed via the relative change of area ΔA=A0 as a function of
the rescaled time σmaxt. Experimental data (points) and results of
numerical simulations [32] (solid curves) show that ΔA=A0 ∝
expð2σmaxtÞ at early times (dashed lines), with σmax determined
from (6). Here different values of the dimensionless pressure
p̃ring ¼ T inR3

in=ðBhÞ are shown by different symbols: circle,
p̃ring ¼ 31; square, 37; diamond, 56; left pointing triangle,
132; triangle, 238. In each plot, the predicted value of
σmaxðp̃ringÞ is used and the origin of time is shifted so that
ΔAðt̃ ¼ 0Þ=A0 ¼ 1%. (Two runs are shown for p̃ring ¼ 238, to
give an indication of the systematic error.)
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n
nmax

¼ aβ=½2ðβþ1Þ�: ð9Þ

We note that this scaling argument is reminiscent of the
Kibble-Zurek mechanism for the size of defects observed
during a continuous nonequilibrium phase transition as the
quenching rate changes [33,34].
The general form of (9) with a ¼ 0.25 is in reasonable

agreement with the observations from numerical simula-
tions (dashed line in Fig. 5), although for small n, the errors
caused by wrinkle discreteness are non-negligible.
Conclusion.—In this Letter, we have studied the

dynamic buckling of elastic rings and annuli subject to a
controlled compressive force. We have shown that pattern
selection in this system depends on the geometry of the ring
(its thickness-to-width ratio), as well as its mechanical
properties. Although it is the presence of inertia that allows
for the selection of modes of instability other than those
observed in static scenarios, the inertia itself does not affect
the observed mode number when the load is applied
sufficiently quickly. Otherwise, modification of the rate
of loading is itself enough to select different buckling
patterns—a new approach through which different mor-
phologies may be selected in a particular system. Moreover,
because pattern selection occurs while the object deforms
elastically (and not plastically [7] or fracturing brittlely [8]),
changing this dynamic loading might provide a new route
for changing the pattern observed in repeated runs with the
same elastic object.
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