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Dense granular materials and other particle aggregates transmit stress in a manner that belies their
microstructural disorder. A subset of the particle contact network is strikingly coherent, wherein contacts
are aligned nearly linearly and transmit large forces. Important material properties are associated with these
force chains, but their origin has remained a puzzle. We classify subnetworks by their linear connectivity,
and show the emergence of a percolation transition at a critical linearity at which the network is sparse,
coherent, and contains the force chains. The subnetwork at critical linearity closely reflects the macroscopic
stress and explains distinctive features of granular mechanics.
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Stress transmission in dense, amorphous aggregates of
athermal particles, such as granular materials, emulsions,
foams and biological cells, is characterized by a spatially
inhomogeneous network of interparticle contact forces
[1-10]. Numerous experimental [1-10] and computational
13—11]] studies have shown that a small subset of the force
network, in the form of filamentary quasilinear structures
called force chains, transmit large forces. The emergence of
a seemingly ordered, spatially correlated network in a
structurally disordered particle assembly with only short-
ranged repulsive interactions has been a long-standing
puzzle. There is substantial evidence that this strong force
subnetwork exerts significant influence on the mechanical
and transport properties of the medium [10,12,14-18]—
understanding its origin and statistical properties is there-
fore of considerable value.

Previous studies that have analyzed force networks in
granular materials have primarily aimed at identifying force
chains, typically as clusters in which the normal force in all
contacts exceeds a threshold [4,5,11,12]. More general
classifications of connected clusters have also been
attempted, by the use of techniques such as community
detection [19] and topological network properties [20].
These studies point to the difficulty of objective identi-
fication of force chains based on pair interactions alone.
More importantly, they do not offer an explanation for the
origin of coherent force transmission in disordered media,
and why the spatial correlation of force in force chains is
long ranged.

Attempts to understand spatial correlation in granular
force networks [13,21] have used the normal contact force
F, to classify subnetworks in grain assemblies subjected to
isotropic compression. They found a percolation transition
at a critical force F, with critical scaling in the vicinity of
F¢,, but came to contradictory conclusions: while Ref. [13]
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found the scaling exponents to differ from those of the
random percolation universality class, and inferred the
presence of long-ranged correlation in forces, the more
recent study of Ref. [21] investigated larger systems and
found the critical exponents to be almost the same as those
of the random percolation universality class, thereby
inferring the absence of long-ranged correlation.
Moreover, these studies do not explain the linear structure
of the force chains; indeed, we show in this Letter that the
structure of the network at F¢ is nearly random, and bears
little similarity with experimentally observed force chains.

In this study we use a network connectivity measure to
classify subnetworks of connected contacts. Motivated by
experimental observations [1-10] that force chains are
roughly linearly aligned, we use a simple but robust
definition of linearity as the connectivity measure. In
computationally generated static granular assemblies sub-
jected to a variety of external forcing, and in the dynami-
cally forced system of steady shear, we find a percolation
transition at a critical linearity at which the largest clusters
span the system. We show that the clusters of critical
linearity constitute the strong force network, of which force
chains are a subset, and for which there is long-ranged
spatial correlation of the contact force. The orientation of
the clusters of critical linearity strongly reflects the imposed
macroscopic stress, and explains distinctive, even anoma-
lous, features of the stress in granular columns [22,23].
Finally, we show that linearity percolation is a generic
feature of random geometric graphs, thereby explaining the
prevalence of force chains in a variety of amorphous
particulate systems.

The smallest connected network of particles is a triplet,
the linearity of which is r, = n; - n,, where n; and n, are
the unit normals at the two contacts. We define the linearity
of a contact network as

© 2020 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.198002&domain=pdf&date_stamp=2020-05-12
https://doi.org/10.1103/PhysRevLett.124.198002
https://doi.org/10.1103/PhysRevLett.124.198002
https://doi.org/10.1103/PhysRevLett.124.198002
https://doi.org/10.1103/PhysRevLett.124.198002

PHYSICAL REVIEW LETTERS 124, 198002 (2020)

ny

FIG. 1. Definition of cluster linearity. The linearity of the blue
triplet is r, =mn; -n,. The linearity r of the cluster is the
minimum of r, over all triplets in a connected cluster [Eq. (1)].
The end particles A and B are either at the boundaries, or in
triplets of r, <0.

r = min(r,|r, > 0), (1)

i.e., the minimum triplet linearity in the network such that
the angle between adjacent normals is less than /2
(Fig. 1). It is intuitively apparent that this is a “weakest
link”” measure, as the fraction of the normal force from one
contact that can be transmitted to the next decreases as r,
approaches 0. With this definition of connectivity, the
network of particles in contact is transformed to a weighted
graph, with the contacts being the nodes and their con-
nections (triplets) being the edges (see Sec. II of
Supplemental Material [24]). While this a purely configu-
rational measure of connectivity, we show below that it
captures the key features of the strong force network, sheds
light on how it arises, and reveals its statistical features.

We generate configurations of a collection of spheres of
mean diameter d,, from computations using the discrete
element method, which computes the motion of the
particles using an elastoplastic interaction force. Slight
polydispersity in size is maintained to avoid crystalline
order. A variety of problems, corresponding to different
boundary and forcing conditions were simulated in two and
three dimensions. In each problem, the subnetwork of
connected triplets of linearity r is sieved out of the entire
network, and its connectivity characterized by enumerating
the number clusters with s contacts n(s, r) using tools from
graph analysis. Details of the computational method,
generation of configurations, subnetwork sampling, and
the determination of network statistics are given in the
Supplemental Material [24]. All the results reported are
averages over a large number of configurations.

To demonstrate linearity percolation, we first consider a
system of N particles in a two-dimensional square domain
of size L subjected to isotropic compression. When r is
near unity, there are only isolated triplets; as r is decreased,
the fraction of connected triplets remains small until a
critical linearity r., at which connected triplets percolate
through the system [Fig. 2(a)]. The percolation transition is
robust—it is observed for a wide range of pressure and
particle interaction parameters (Fig. S3.1c and Sec. V in the
Supplemental Material [24]). The transition exhibits the
scaling properties of bond percolation and continuous
phase transitions [25]: in the vicinity of r. the percolation
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FIG. 2. Linearity percolation. (a) Percolation probability P(r)
for 2D isotropic compression for different system sizes L (in units
of d,), the inset showing the collapse for different system sizes
when the abscissa is plotted as (r — r,)N'/%. The dashed line
marks the value of r., which here is 0.609; it is in general a
function of the area fraction. (b) Finite size scaling of the mean
cluster size S(r). (c) Percolation probability P(r) for anisotropic
forcing, in two and three dimensions. The geometries and
boundary conditions are described in Sec. III of the Supplemental
Material [24].

probability P(r) varies as f[(r — r,)N'/%], and the mean
cluster size S(r) varies as N*g[(r — r.)N'/%], where ¢, v
are the critical exponents, and d is the dimension of the
system [Fig. 2(b)]. The values of r. and the exponents are
obtained using standard techniques (see Sec. II. B of the
Supplemental Material [24]): our estimates are ¢ = 0.93 £
0.29 and v = 1.15 £ 0.35. We note that the uncertainties in
the estimates of ¢ and v are significant, indicating that
averaging over more configurations is necessary (see
Sec. II. B of the Supplemental Material [24]), which is
currently computationally prohibitive. This precludes a
conclusion on whether or not the network belongs to the
random percolation university class [25] (¢ = 43/48,
v =4/3), but we show below that this has no bearing
on the nature of force correlation. It is noteworthy that for
the same system, the linearity of force percolated clusters
discussed earlier with reference to Refs. [13,21] is less than
0.1, as shown on Fig. S2.2 of the Supplemental Material
[24]; the figure also shows, for three randomly chosen
configurations, that the maximally linear force percolating
clusters (with force cutoff of F§) are much more tortuous
than linearity percolating clusters. It is thus clear that the
clusters at F are virtually random, and bear little resem-
blance to force chains.

Importantly, we observe linearity percolation even for
anisotropic forcing, such as static grain assemblies sub-
jected to uniaxial compression and gravity-bound silos,
and in the dynamically forced system of steady shear
[Fig. 2(c)]. This shows that such a connectivity transition is
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FIG. 3. Statistics of contact forces in subnetworks of different

linearity. (a) Spatial correlation function of the contact force
Cr(?) in the vicinity of critical linearity; the red line is the power
law fit a#” at critical linearity (a = 0.11, b = —0.65). (b) Varia-
tion of average contact force with linearity r, for random seeds
(black squares) and seeds with a minimum contact force of the
global mean (F,) (green circles). The radius of gyration R, of
nonpercolating clusters is also shown. The dashed line marks
critical linearity r. = 0.609. The results in a and b are for 2D
isotropic compression with system size L = 100d,,. (c) Proba-
bility distribution of the incremental normal contact force due to a
point force F; acting on the surface of a 2D rectangular bed under
gravity (see Sec. III. D in the Supplemental Material [24]), in
clusters of different linearity; here r. is 0.66.

a general signature of granular microstructure in static and
slowly deforming states. Estimating the critical exponents
for anisotropic systems is not straightforward, and not well
studied. However, for our analysis it suffices to obtain an
estimate of r, from the maximum of F,(r), defined below
(see Fig. S2.1 of the Supplemental Material [24]); as shown
in Fig. 3(b), this provides a good estimate for isotropic
compression. We show presently that this estimate of r,
usefully connects the network structure to the macroscopic
stress.

Though r is a purely configurational quantity and its
percolation is determined without reference to the
forces in the contact network, the spatial correlation of
force in the network depends strongly on it. To demonstrate
this, we compute the correlation function Cy(l) =
(6(Lij — DF,, F,), where F),, is the deviation of the normal
force at contact i from the mean over all pairs (F,), [;; is the
distance between contacts i and j, and the angle brackets
denote averaging over the subnetwork of linearity r over
multiple configurations. C(l) exhibits a power law decay
at r =r, and an exponential decay above or below r,
[Fig. 3(a)], indicating long-ranged correlation at critical
linearity, and short-ranged correlation away from it. The
mechanical relevance of linearity becomes clearer when
we consider the mean force F,(r) in the subnetwork of

linearity —we see that F',,(r) is maximum at r,. [Fig. 3(b)].
The peak is clearly discernible, but small because the
network is sampled from seed contacts chosen randomly; if
the seeds are chosen from the subset of contacts that bear a
normal force of at least (F,), the mean force in the
subnetwork rises much more sharply as r increases to
r., followed by a linear rise above r,. The rise in F, for
r > r. is not of mechanical significance, as the radius of
gyration of connected clusters drops sharply above .., and
so does their occurrence (see Fig. S2.4 of the Supplemental
Material [24]). Thus, clusters of high linearity do not
necessarily bear large forces, but the large force bearing
clusters are of linearity r.. The fraction of particles in the
subnetwork at linearity r, is small, as shown in Fig. S2.4 of
the Supplemental Material [24]—it is now clear that the
subnetwork at critical linearity is sparse, coherent, and
contains the force chains.

A statistical feature of forces in grain assemblies that has
been widely observed [2,3,12,26] is that the probability
distribution of normal contact force P(F,) decays expo-
nentially for large F,,. In the context of our analysis, it is
useful to determine the contact force distribution P(F,,, r)
in subnetworks of linearity r. This is best illustrated by
considering the incremental force network arising from a
point force F; applied on the surface of a gravity-deposited
granular bed. The distributions for different r are shown in
Fig. 3(c), where it is clear that the probability of finding a
large contact force is much higher in subnetworks of
linearity r.: specifically, P(}F.r.) is over 100 times
larger than P(} F.0). The results in Fig. 3 provide clear
evidence that force chains are subsets of critically linear
clusters.

Experiments and simulations have shown that force
chains in 2D assemblies tend to align along the direction
of major principal stress [3,12,27]. To probe this feature, we
consider the probability distribution P (6, r) of the ori-
entation of clusters in networks of different linearity (see
Sec. II. D of the Supplemental Material [24]). For isotropic
compression, P (0, r) too is isotropic, irrespective of r
[Fig. 4(a)]. In uniaxial compression and plane shear,
P4(60,r.) has sharp peaks in the directions of the major
principal stress [Fig. 4(b), 4(c)], but the distribution is
nearly isotropic for r even slightly less than r.—thus, only
the subnetwork at r. closely reflects the anisotropy of
forcing. Most previous studies have quantified microstruc-
tural anisotropy by examining the distribution of the pair
contact vector n (Fig. 1), but it is clear from Fig. 4(b), 4(c)
that the orientation of critical clusters is a much more
accurate indicator of the macroscopic forcing.

Indeed, the orientation of critical clusters explains some
distinctive and non-trivial features of the stress in granular
columns under gravity. It is well known that the stress in a
static vertical column of grains saturates exponentially with
depth, as a result of a vertical shear stress o,, imposed by
the walls owing to Coulomb friction [22,28]; this effect has
also been observed in a horizontal layer of disks driven by a
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FIG. 4. Clusters of critical linearity reflect the macroscopic stress. (a) Orientation distributions of clusters of different linearity,
P4(6,r), and the pair contact vector for different forcing: (a) Isotropic compression (r. = 0.6089), (b) uniaxial compression
(r, = 0.63), and (c) plane shear (r. = 0.62). In (b) and (c) the red dashed lines indicate the principal directions of compression.
(d) Schematic of a 3D granular column; the column is static when the velocity V, is zero, and it is sheared in the horizontal direction
when V, is nonzero. (e),(f) Variation of the mean critical cluster angle [see Fig. S2.3(b) [24] ] and axial shear stress with depth z in a 3D
granular column of lateral dimension 2W = 20d » when the column is, respectively, static, and sheared in the y direction. Here,
z=z/(2W) and 6,, = o,,/(pgW) are the scaled depth and vertical shear stress, where p is the bulk density of the granular material in

the column, and g the gravitational acceleration.

frictional belt, provided the confining lateral walls have a
sawtooth serration [29]. Recently, a curious feature was
revealed when the vertical column is sheared in the
horizontal direction [23] by moving one wall relative to
the other with velocity V,, [Fig. 4(d)]; it was observed that
oy, changes sign due to a dilation-driven secondary flow
[30], and the magnitudes of all stress components rise
exponentially with depth. In both these cases, we trace out
clusters of critical linearity starting from seed contacts on
the walls, and examine their average orientation 6 (see
Sec. II. D of the Supplemental Material [24]). In a static
column, @ is positive [Fig. 4(e)], indicating that the clusters
transmit a downward traction to the walls, or 6,, > 0. In a
sheared column, € is negative [Fig. 4(f)], indicating
that the critical clusters transmit an upward traction to
the walls, whence o6,, < 0. In both cases, the variation of
oy, with depth is closely reflected by that of . Thus, the
intriguing observation of Ref. [30], which is yet to find a
complete continuum mechanical explanation, is reflected
in the orientation of the clusters of critical linearity.

Furthermore, in the sheared column the static base
influences the stress at sufficiently large depths (z > 10),
causing o, to change sign; this too is reflected in the profile
of 0 [Fig. 4(f)].

It is pertinent to ask what aspect of grain interactions
leads to percolation of linearity? To answer this question,
we studied the connectivity of random geometric graphs
[31,32] (see Sec. IV of the Supplemental Material [24]),
wherein edges (contacts) are connected randomly, but
keeping the average number of connections per node
(particle) fixed. Interestingly, we find linearity percolation
in such a graph, with critical exponents for the percolation
transition ¢ = 0.98 +0.034, v = 1.42 + 0.037 that differ
considerably from those of the random universality class.
The critical exponents fall within the range of uncertainty
of our estimates for particle configurations generated by
isotropic compression, discussed earlier. It is well known
that for a fixed spatial dimension, the critical exponents are
independent of the lattice structure. This suggests strongly
that linearity percolation, and thereby force chains, arise
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from topological constraints of the contact network, rather
than the details of the interaction force (such as friction)
and the balance of force and torque on each particle, as
suggested by some studies [4,5,13]. It is also a plausible
explanation for why similar force networks are observed in
a variety of other aggregates of athermal particles, such as
emulsions, foams, and living cells [1-9].

In conclusion, we have shown that coherent trans-
mission of force via force chains in disordered granular
materials arises from a percolation of quasilinear clusters.
The subnetwork at critical linearity, corresponding to the
percolation transition, exhibits most of the mechanical
and statistical features commonly associated with dense
granular materials [3,12,22,23,27], thereby elucidating the
importance of force chains in granular mechanics. Our
results throw light on why force chains are seen in many
disparate physical systems [1-9]. Furthermore, we have
shown that the configuration of particle positions deter-
mines the nature of force transmission—this is an
important result, as it is commonly believed that for a
system of jammed particles, the configuration of inter-
action forces is a more appropriate descriptor of its state,
as a very small perturbation in a particle’s position can
cause a large change in its interaction forces. While this
is certainly true at the particle scale, our study shows that
the position configuration at large scales, or the topology
of the contact network, determines the mechanics. Our
study makes two important connections to current studies
on dense particulate materials. The first relates to
continuum models, where the need for introducing a
fabric tensor in the constitutive relation for the stress
[23,33,34] has been increasingly felt. While all previous
studies have used the pair contact vector to derive a
fabric, we make a compelling case for using a fabric
based on the orientation of clusters of critical linearity.
The second connection relates to the statistics of particle
configurations: a long-standing proposal [35] is that all
configurations for a fixed volume (that satisfy the
constraints of force balance on particles) are equally
probable, which has found some computational validation
[36,37]. Our results indicate that even if this proposal is
valid, only a small subset of the particle assembly in each
configuration, which corresponds to linearity percolating
clusters, are of mechanical relevance. Sorting configura-
tions based on the linearity of percolating clusters
therefore appears to be a worthwhile pursuit, which
we are currently working on.
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