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Using an algebra of second-quantized operators, we develop local two-body parent Hamiltonians for all
unprojected Jain states at filling factor n=ð2npþ 1Þ, with integer n and (half-)integer p. We rigorously
establish that these states are uniquely stabilized and that zero mode counting reproduces mode counting in
the associated edge conformal field theory. We further establish the organizing “entangled Pauli principle”
behind the resulting zero mode paradigm and unveil an emergent SUðnÞ symmetry characteristic of the
fixed point physics of the Jain quantum Hall fluid.
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Introduction.—The fractional quantumHall (FQH) effect
enjoys a unique position in strongly correlated electron
physics both as a fascinating physical effect [1] as well as a
central juncture for the percolation of ideas between corre-
lated electron physics and other areas of theoretical and
mathematical physics. Originally, the success of the field
owes much to construction principles for variational wave
functions [2–6] and associated ideas to connect the latter to
effective field theories [5,7–9]. In our opinion, the intimacy
of the connection between microscopics and effective
quantum field theory that is achievable in this field is, in
some cases, essentially unparalleled. This is the case when
the construction of a parent Hamiltonian [4,5,10,11] is
possible that falls into what we term the “zero mode
(ZM) paradigm”: The zero (energy)mode space of a positive
semidefinite Hamiltonian is composed of an incompressible
state as well as edge or quasihole excitations, where the
counting of ZMs in each angular momentum sector (relative
to the incompressible state) precisely matches [6,12,13] the
mode counting in the conformal edge theory. This then
unambiguously points to the edge conformal field theory
associated to the state, and, thanks to bulk-edge correspon-
dence, all universal physics are then essentially fixed
through exact properties of the microscopic Hamiltonian.
While a considerable number of these very special

Hamiltonians exist, they are absent for many phases that
are of central importance to the theory of the Hall effect.
The latter include almost all phases described by Jain
composite fermion (CF) states [14–17], which are key to

the understanding of the physics at Landau level (LL)
filling factor ν < 1. While some Hamiltonians have been
proposed for (non-Laughlin) Jain-type states [18–20], a ZM
paradigm has only been established at 2=5 in Ref. [21] (for
other more exotic parton states in Ref. [22]). There, some of
us have argued that such a paradigm is possible in principle
only for unprojected Jain states, which are well known to
be in the same phase as their projected counterparts [18,23].
In this case, traditional first-quantized construction princi-
ples for parent Hamiltonians face unusual challenges.
The latter seek to enforce “analytic clustering properties”
[24–26] in the few-body density matrices of ZMs
[4,5,10,11,27,28]. Indeed, unprojected Jain states generally
have a zero of order 2pþ 1, with (half-)integer p ≥ 0, when
two particles meet at the same point. However, enforcing
just this (2pþ 1)-clustering property will generally lead to
more exotic “parton” states [3,7,29] as the incompressible
ground states when more than n ¼ 2 LLs are present
[22,30]. Actually, the (2pþ 1)-clustering property comes
from a purely holomorphic factor of the wave function
while an antiholomorphic dependence is also present. This
additional information is not straightforwardly enforced
through a local Hermitian few-body interaction.
In this work, we solve this problem for all Jain CF states

at filling factors n=ð2npþ 1Þ, with integer n ≥ 1. We
utilize a recently developed operator formalism [31] that
describes CFs as second-quantized objects in Fock space.
This leads to an algebraic construction of the parent
Hamiltonian that represents a radical departure from the
traditional constructions principles described above, and
fully embraces the “guiding-center-only” approach to FQH
physics that has recently been influential [32,33]. Our
results have further important ramifications for the theory
of frustration free lattice Hamiltonians, in that we establish
a framework where these become tractable even if inter-
actions are not strictly short-ranged in generalized lattice
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coordinates. A close connection with the recently cel-
ebrated matrix-product structure of many FQH states
[34–36] is anticipated, though we leave details for future
work [37].
Composite fermions and zero modes.—The unprojected

(mixed-LL) Jain state at filling factor ν ¼ n=ð2npþ 1Þ
[38] can be defined in disk geometry as

Ψn;pðNÞ ¼
Y

1≤i<j≤N
ðzi − zjÞ2pΦnðNÞ; ð1Þ

where ΦnðNÞ denotes an integer quantum Hall (IQH) state
of N particles in n LLs, and the zi ¼ xi þ iyi, z̄i ¼ xi − iyi
are the particles’ complex coordinates. ΦnðNÞ is by
definition a state of “densest” possible electron configura-
tion for given n and N, where ambiguities at the edge may
arise for certain N that we will resolve below.
Equation (1) clearly has a “clustering property,” where

the wave function has a (2pþ 1)th order zero when two
particles converge to the same point. However, only for
n ¼ 2 [21,22] does Eq. (1) represent the densest (largest
filling factor) wave function(s) having this property.
Related to that, for n ¼ 2, p ¼ 1 there is the aforemen-
tioned, well-documented parent Hamiltonian satisfying the
zero mode paradigm. To solve the general problem, we turn
to an alternative characterization given by some of us [31]
in terms of an algebra of second-quantized operators, which
can be understood as “ZM generators.” We begin by
summarizing the nuts and bolts of this formalism.
In first quantization, an orbital ϕm;l in the (mþ 1)th LL,

m ¼ 0; 1;…, with angular momentum l is a superposition
of monomials of the form μa;l ¼ z̄azlþa, with 0 ≤ a ≤ m.
(We omit obligatory Gaussian factors.) Higher LL many-
body wave functions such as Eq. (1) may be expanded in
μa;l, adorned with additional particle indices. A significant
advantage of the first-quantized presentation is the fact that
this expansion is essentially geometry independent, assum-
ing that we limit ourselves to zero genus geometries (disk,
cylinder, sphere) [33]. This is so since there is a one-to-one
correspondence between the wave functions in these
geometries, once z̄, z (for the disk) are replaced with
suitable functions of coordinates respecting the boundary
conditions of the respective geometries. In other words,
variational wave functions such as Eq. (1) are described by
the same polynomials in the genus 0 geometries. To obtain
a manifestly geometry independent language, and to the
extent that the successful construction of a parent
Hamiltonian is a direct consequence of the underlying
polynomial structure, however complicated, it proves
advantageous to make the monomials μa;l the essential
degrees of freedom of the second-quantized formalism also.
For fixed a, we think of these orbitals as constituting
a “Λ level” (ΛL). We thus introduce pseudofermion [39]
operators c̃a;l, c̃�a;l satisfying canonical anticommutation
relations,

fc̃a;l; c̃�a0;l0 g ¼ δa;a0δl;l0 ; ð2Þ

where c̃�a;l creates an electron in the orbital μa;l. These
orbitals are not normalized or orthogonal (for fixed l), and
hence, c̃�a;l and c̃a;l are not Hermitian conjugates, but this
will present no obstacle in the following. If desired, at the
end we may always return to the canonical creation and
annihilation operators cm;l, c

†
m;l of the orbitals ϕm;l via

c†m;l ¼
Xm
a¼0

A−1ðlÞm;ac̃
�
a;l; cm;l ¼

Xn−1
a¼m

c̃a;lAðlÞa;m: ð3Þ

The (real, lower-triangular) matrix AðlÞ is the only
geometry-dependent aspect of this formalism. It is given
in Ref. [40] for the disk and cylinder geometries.
The considerable advantage of the second-quantized

formalism [33], especially for multiple LLs, lies in the
fact that it gives us control over an algebra of “ZM
generators” we arguably do not have in first quantization.
It is also much more conducive to recursive schemes in
particle number, which we will now heavily pursue. To this
end, we introduce the following operators, which we will
think of as ZM generators in a sense to be made precise:

p̂a;b
k ¼

X
l

c̃�a;lþkc̃b;l ða≥ b−k for disk geometryÞ; ð4Þ

and which is a generalization of the operatorOd introduced
in Ref. [33] for multiple LLs.
The operators in Eq. (4) generate an algebra (via taking

sums and/or products) that we denote by Z. The signifi-
cance of this algebra is manifold [31]. It allows for a
definition of CF states recursive in particle number, quite
distinct from the recently fashionable matrix-product pre-
sentation of FQH states [35,36], but it is, in essence a
generalization of Read’s expression of the Laughlin state
through a nonlocal order parameter [53,54]. Indeed, the
algebra allows for a microscopic definition [31] of a
complete set of order parameters for CF states. In the
present context, it will turn out that the algebra Z generates
all possible ZMs when acting on the incompressible ground
state. In that sense they are related to the first-quantized
formalism discussed by Stone [55] for the Laughlin state,
possible there because

P
n−1
a¼0 p̂

a;a
k [which, for n ¼ 1 LL, is

really all Eq. (4) boils down to] has a simple first-quantized
interpretation: It multiplies many-body wave functions with
power-sum symmetric polynomials pz ¼

P
zki [33,54]. For

multiple LLs, however, we need the full set p̂a;b
k , which

does not have a straightforward first-quantized interpreta-
tion [30,31].
Consider now Eq. (1). To resolve the “edge ambiguity”

mentioned above, we define the Slater determinant by
successively filling the state μa;l with lowest available
lþ a that has lowest not-yet-occupied a. We seek to
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establish a parent Hamiltonian such that Eq. (1), which we
now also suitably write jΨn;p;Ni, is a ZM of this
Hamiltonian. Since general ZMs will describe edge exci-
tations and, deeper in the bulk, quasihole excitations [56],
one has the intuition [53] that c̃a;ljΨn;p;Ni, is also a ZM of
the Hamiltonian, namely, one describing a cluster of
quasiholes of total charge 1 inserted into jΨn;p;Ni.
Anticipating that this is so, then, with the properties of
the p̂a;b

k as advertised, we must be able to interpret this as a
ZM generated by some combination of p̂a;b

k on top of the
reference state jΨn;p;N−1i, or

c̃a;ljΨn;p;Ni ¼ Ẑn;p;N;a;ljΨn;p;N−1i; ð5Þ

where Ẑn;p;N;a;l is a suitable element of the algebra Z.
Indeed, the relation between Ẑn;p;N;a;l and the generators
(4) was made explicit in Ref. [31], but will not be needed in
the following.
Parent Hamiltonian for composite fermions.—We are

now ready to present the following Hamiltonian,

Hn;p ¼
X
J;r;a;b

Er
a;b;JT

r†
a;b;JT

r
a;b;J; ð6Þ

Tr
a;b;J ¼

X
x

xrc̃a;Jþxc̃b;J−x; ð7Þ

where J runs over half-integer values with J ≥ −n,
0 ≤ r < 2p, 0 ≤ a ≤ b < n. The Tr†

a;b;JT
r
a;b;J [57] are suit-

able generalizations of pseudopotentials, whose relation to
Haldane pseudopotentials for n ¼ 1 was discussed in
Ref. [33]. The Er

a;b;J are positive constants and may be
used to enforce desirable spatial symmetries. We show in
Ref. [40] that positive Er

a;b;J can always be chosen so as to
render the resulting Hamiltonian local. The Tr

a;b;J may also
be replaced with new linearly independent combinations
without affecting the ZM space. It is worth noting that the
absence of a kinetic energy splitting between the first n LLs
is a feature that is realized in certain stackings of multilayer
graphene [58–60].
For fermions, Tr

a;b;J vanishes for even r and a ¼ b,
giving pn2 different pseudopotentials at each pair-angular
momentum 2J. Assuming disk geometry, we use the
convention c̃a;l ≡ 0 for aþ l < 0. A key observation is
that the operators Tr

a;b;J and p̂a;b
k satisfy the following

commutation relation:

½Tr
a;b;J; p̂

a0;b0
k � ¼

Xr

r̃¼0

�
r
r̃

��
k
2

�
r−r̃

× ½ð−1Þr−r̃Tr̃
a;b0;J−k=2δb;a0 þ Tr̃

b0;b;J−k=2δa;a0 �:
ð8Þ

This justifies the notion that the p̂a;b
k are ZM generators:

The condition for jψi to be a ZM of the positive semi-
definite Hamiltonian (6) reads Tr

a;b;Jjψi ¼ 0 for all r, J, a,
b. The commutator (8) thus clearly vanishes within the ZM
subspace. Therefore, any p̂a;b

k acting on jψi immediately
generates another ZM, with angular momentum increased
by k. In the following, we first wish to (i) establish that the
Jain state jΨn;p;Ni is a ZM of Eq. (6) and (ii) find all ZMs
of Eq. (6).
We achieve these goals via a radical departure from

established paradigms, i.e., not paying attention whatsoever
to analytic clustering properties. We will do so by utilizing
the properties of the second-quantized operator algebras
given above and in the following. For part (i), we give a
simple proof by induction in N which extends that of
Ref. [61]. We give the induction step first, assuming that
jΨn;p;N−1i is known to be a ZM. One easily verifies that
Tr
a;b;J ¼ 1

2

P
ã;l½Tr

a;b;J; c̃
�
ã;l�c̃ã;l. We apply this to jΨn;p;Ni.

Using Eq. (5) together with the fact that Ẑn;p;N;a;l is
a ZM generator, i.e., Tr

a;b;J annihilates Eq. (5), and thatP
a;l c̃

�
a;lc̃a;l gives the total particle number N, yields

Tr
a;b;JjΨn;p;Ni ¼ ðN=2ÞTr

a;b;JjΨn;p;Ni, or Tr
a;b;JjΨn;p;Ni ¼ 0

for N > 2. So far, the only special property of the Tr

operators (0 ≤ r < 2p) that we have used is that Ẑn;p;N;a;l is
a ZM generator as defined above. All that is left to do is to
establish an induction beginning for N ¼ 2. Indeed, the
N ¼ 2 state in the class of states jΨn;p;Ni has the wave
function ðz1 − z2Þ2pðz̄1 − z̄2Þ, or, in second quantization,

jΨn;p;2i ¼
X
j

ð−1Þj
�
2p
j

�
c̃�1;j−1c̃

�
0;2p−jj0i: ð9Þ

This state has angular momentum 2J ¼ 2p − 1, and the
only Tr operators that could possibly not annihilate it are of
the form Tr

0;1;J . Acting with these operators produces

X
j

�
j − p −

1

2

�
r
ð−1Þj

�
2p
j

�
j0i ¼ 0; ð10Þ

for r < 2p, since indeed [62]
P2p

j¼0ð−1Þjð2pj Þðx − jÞ2p ¼
ð2pÞ! independent of x, such that taking x derivatives
implies Eq. (10).
Entangled Pauli principle (EPP).—Having now estab-

lished that the Jain state jΨn;p;Ni is a ground state of the
Hamiltonian Hn;p, Eq. (6), we seek to understand the full
ZM space of these Hamiltonians. This will, in particular,
establish the densest ZM(s) of this Hamiltonian, whose
existence is generally taken as the hallmark of incompress-
ibility. The key to obtaining such results for Hamiltonians
of the form (6) lies in the fact that there is a now well-
established [21,22,33,61] general method to derive neces-
sary conditions, in the form of “EPPs” [22], on the “root
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states” for ZMs of such Hamiltonians. These root states
encode the DNA of the incompressible fluids. Using these
techniques we now establish that a complete set of ZMs for
Hn;p is of the form (1), with the IQH state Φn replaced by
Sn, a generic Slater determinant with definite occupancies
in n Landau-/ΛLs. That indeed such states are ZMs follows
easily from the fact that the p̂a;b

k are ZM generators,
together with the convenient property that they commute
[31] with the Laughlin-Jastrow flux-attachment operator.
Acting on Eq. (1), the p̂a;b

k may thus be thought of as acting
directly on the IQH factor Φn, thus, on ΛL degrees of
freedom. It is easy to see that any Sn can be generated out
of Φn by acting with appropriate products of p̂a;b

k ’s.
Consider now the expansion of any ZM jψi into ΛL

Slater determinants:

jψi ¼
X

Cða1;r1Þ;…;ðaN;rNÞd̃
�
a1;r1 � � � d̃�aN;rN j0i; ð11Þ

where we introduce d̃a;r ¼ c̃a;r−a, d̃
�
a;r ¼ c̃�a;r−a, with labels

that refer to a “pseudo-guiding-center” R ¼ P
a;r rd̃

�
a;rd̃a;r

[63]. This renders r to be non-negative, just as a. We define
terms in the expansion (11) as “nonexpandable” [33] if the
action with every possible “expansion” operator of the form
d̃�a0

1
;r1−xd̃

�
a0
2
;r2þxd̃a1;r1 d̃a2;r2 , r1 ≤ r2, x > 0 leads to a term

with zero coefficient. The root state of jψi, jψiroot, is now
defined as that part of the expansion (11) consisting only of
nonexpandable terms. jψiroot so defined is necessarily
nonvanishing due to the finite dimensionality of the sub-
space of given R [22,64]. As shown in Ref. [40], jψiroot is
subject to the following EPP. (i) The r values of any two
occupied single-particle states differ at least by 2p. (ii) If
they differ precisely by 2p, the root-level coefficients have
the following antisymmetry property in ΛL indices:

C…ðai;riÞ;ðaiþ1;riþ2pÞ… ¼ −C…ðaiþ1;riÞ;ðai;riþ2pÞ…: ð12Þ

As in many known examples, the EPP immediately reveals
the densest possible filling factor at which ZMs of the
model (6) may exist. To this end, it is useful to translate the
EPP into a language of SUðnÞ spins, where each spin
carries the fundamental representation. We may think of the
ΛL index of a particle as an SUðnÞ index, and of its r index
as the position in a one-dimensional lattice. Then, permis-
sible root states must be (linear combinations of) product
states associated with certain clusters, each cluster con-
taining up to n particles. Within each cluster, particles are
2p sites apart, and the “spin” wave function of each cluster
is totally antisymmetric. This renders the largest possible
cluster an “SUðnÞ singlet” of n spins [Fig. 1(a)], and
clusters must be separated by at least 2pþ 1 sites. It is easy
to see that the densest possible root state is just a product of
such clusters at a filling factor of n=ð2npþ 1Þ. There are
thus no ZMs whose filling factor can exceed this value in
the thermodynamic limit, and the corresponding Jain state

just satisfies this bound. One can, more generally, show
[40] that the number of possible root states sets an upper
bound for the number of ZMs present in each angular-
momentum-/R sector. A state counting argument shows, in
turn, that the number of CF states of the form (Jastrow
factor)×Sn precisely saturates this bound [40]. Therefore,
such CF states form a complete set of ZMs of Eq. (6). It is
further easy to see that the counting of such CF states in a
given angular momentum sector (relative to a minimum
angular momentum CF state) coincides with the number of
modes in the expected edge theory of n branches of chiral
fermions or bosons. This is pleasingly consistent with the
fact that these ZMs are all generated by the application of
the bosonic “density modes” (4) on the reference state (1),
and that these modes have the simple action on the Slater
parts of CF states stated above. The Hamiltonians con-
structed here are thus true representatives of the ZM
paradigm discussed initially. Detailed numerical verifica-
tion of this result is reported in Ref. [40].
Emergent SUðnÞ symmetry.—In essence, the above

establishes that root states jΨiroot come as products of
representations of SUðnÞ. Indeed, an underlying SUðnÞ
symmetry is present not only at root level, but is an
emergent property of the full ZM space. To make this
symmetry readily visible, we write the commutation
relations of the zero-mode generators [31]:

½p̂a;b
k ; p̂b0;a0

k0 � ¼ δb;b0 p̂
a;a0
kþk0 − δa;a0p̂

b0;b
kþk0 : ð13Þ

In a cylindrical geometry, where there is no constraint on
the subscript k, the above commutator is just the loop
algebra of SUðnÞ. In particular, for k ¼ k0 ¼ 0, we recover
the algebra of SUðnÞ itself [65]. For the disk, we have the
constraint a ≥ b − k, and the operators p̂a;b

b−a still realize an
SUðnÞ subalgebra. Therefore, the invariance of the ZM
space under the infinite-dimensional algebra of zero-mode

FIG. 1. Graphic representation of the clusters emerging at root
level jΨiroot. Panels (a)–(c) show the individual building blocks
for root states assuming n ¼ 3, p ¼ 1, such that the underlying
group structure is SU(3) (see text). The oval (a) denotes a singlet.
Panel (d) represents a sample root structure. Clusters generally
consist of up to n particles at distance 2p, totally antisymmetric in
ΛL indices. Clusters are further characterized by the ΛL indices
that are occupied, and must be mutually separated by at least
2pþ 1 orbitals.
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generators implies, in particular, its invariance under
an SUðnÞ subalgebra. In view of the intimate connection
between the ZM generators p̂a;b

k and the edge effective
theory, it is not surprising that this SUðnÞ structure has long
been associated to Jain CF states based on field theoretic
grounds and/or variational constructions [66]. Through the
present work, this structure becomes an exact feature of a
solvable microscopic model for the Jain CF phases (though,
it will, of course, not remain exact under generic perturba-
tions). For the special case n ¼ 2, the similarity with the
findings of Ref. [22] strongly suggests that much of the
formalism presented here can be carried over to a rich class
of “partonlike” states [3,7,29], which offer a large play-
ground for the exploration of non-Abelian topological
phases [30]. We leave this as an interesting challenge for
future work.
Conclusions.—The theory of the FQH effect traditionally

rests on two pillars: (i) quantum-many-body wave func-
tions and (ii) effective field theories. Hamiltonians that are
exactly solvable and fall into the ZM paradigm provide a
transparent connection between these pillars. The incred-
ibly detailed link between the microscopics and effective
field theory provided by edge mode counting has no
counterpart in any other area of strongly correlated
physics in more than one dimension. Even among the
myriad phases of the FQH regime, the definitive parent
Hamiltonians satisfying this paradigm cannot always be
given. This used to be the situation for the most important
class of phases in this regime, those described by Jain CF
states. The present work exposes the underlying reasons for
this and solves this problem by departing considerably
from traditional Hamiltonian construction principles.
The latter seek to describe a suitable few-body density
matrix via analytic clustering principles. This cannot be
done adequately in the case at hand. Instead, we circumvent
this problem by an algebraic characterization of few-body
correlations in a suitable operator framework. Apart
from giving a satisfying solution to the lack of parent
Hamiltonians for Jain states [38], we expect the formalism
presented here to be of profound value in the exploration
of vast classes of more complicated mixed-LL wave
functions realizing rich non-Abelian physics, as well as
to complement traditional lowest-LL methods. We
are hopeful that this angle will inspire exciting future
developments.
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