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Recently, it has become clear that non-Hermitian phenomena can be observed not only in open
quantum systems experiencing gain and loss but also in equilibrium single-particle properties of
strongly correlated systems. However, the circumstances and requirements for the emergence of non-
Hermitian phenomena in each field are entirely different. While the implementation of postselection is a
significant obstacle to observe the dynamics governed by a non-Hermitian Hamiltonian in open
quantum systems, it is unnecessary in strongly correlated systems. Until now, a relation between both
descriptions of non-Hermitian phenomena has not been revealed. In this Letter, we close this gap and
demonstrate that the non-Hermitian Hamiltonians emerging in both fields are identical, and we clarify
the conditions for the emergence of a non-Hermitian Hamiltonian in strongly correlated materials.
Using this knowledge, we propose a method to analyze non-Hermitian properties without the necessity
of postselection by studying specific response functions of open quantum systems and strongly
correlated systems.
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Introduction.—Recently, phenomena described by an
effective non-Hermitian Hamiltonian (NHH) are inten-
sively studied, especially in the context of open quantum
systems (OQS) [1–12]. Effective NHH can induce novel
topological phases [1,11,13–17] and unique phenomena
such as anomalous edge states [7,14], skin effects [18–24],
unusual quantum critical phenomena [8,12,25], unidirec-
tional invisibility [26–28], chiral transport [6,29–32], and
enhanced sensitivity [9,33–38]. Although the total
Hamiltonian is Hermitian, the dynamics of the partial
system alone can be described by an effective NHH, if
the observed particle number of the partial system does not
change during the time evolution. An unchanged particle
number in the partial system can be achieved by applying
postselection. However, postselection becomes exceed-
ingly difficult because the probability of finding a system
with an unchanged particle number decreases exponentially
[39]. Thus, the study of non-Hermitian phenomena in OQS
has been limited to small systems.
Besides experimental and theoretical studies of effective

NHH in the context of OQS, Kozii and Fu [42] demonstrated
that an effectiveNHHdescribes the single-particle properties
in strongly correlated systems (SCS), which can result in the
emergence of exceptional points and Fermi arcs in the
spectral function. The spectral function or other response
functions can be calculated by the single-particle Green’s
function, GRðω; kÞ ¼ ½ω −H0ðkÞ − Σðω; kÞ�−1, where H0

is the noninteracting part of the Hamiltonian and Σðω; kÞ is
the self-energy. The self-energy is represented by a non-
Hermitian matrix describing the correlations between

particles, where the imaginary part of the self-energy
describes the decay of a single-particle excitation. The
single-particle Green’s function can thus be written as
GRðω; kÞ ¼ ½ω −Heffðω; kÞ�−1, whereHeffðω;kÞ¼H0ðkÞþ
Σðω;kÞ is an effective NHH. It has been shown that non-
Hermitian properties of the effective Hamiltonian are related
to correlation effects [40,43–48] and might be used to
explain controversially discussed phenomena, such as
quantum oscillations in topological Kondo insulators
[49] or the pseudogap phase in high-Tc cuprates [42]. It
is interesting to note that in the context of Green’s functions
in SCS, postselection, which is usually difficult to realize,
is not necessary to detect non-Hermitian phenomena.
Until now, studies of effective NHH in the context of

OQS and SCS are proceeding nearly independently from
each other. It is unclear whether a relation between the
effective NHH in both fields exists, and why postselection
is not necessary in the context of SCS, while it is a big
obstacle in experimental studies of non-Hermitian phenom-
ena in OQS.
In this Letter, we demonstrate that the NHH describing

the Green’s function is equal to the NHH describing a
single particle coupled to the rest of particles acting as a
bath under postselection. For this purpose, we analyze the
dynamics of a single particle in the Hubbard model using
the quantum master equation (QME) in the context of
OQS. The equivalence of the NHH in the single-particle
spectral function and in the QMEmakes it possible to study
non-Hermitian phenomena in OQS by analyzing certain
response functions without applied postselection. Our
analysis furthermore reveals why postselection is not
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necessary to observe non-Hermitian phenomena in the
context of single-particle Green’s functions.
Quantum master equation for the Hubbard model.—

First, we derive the QME for the dynamics of a single
particle in a strongly correlated material. Furthermore, we
demonstrate that the effective NHH in the context of OQS
under postselection corresponds to that in the single-
particle Green’s function in the context of SCS. We here
use the Hubbard model as a prototypical model describing
SCS. In order to derive the effective NHH in the Hubbard
model in the context of OQS, we divide the degrees of
freedom into a system, describing a single particle, ðk0; σÞ,
at momentum k0 in spin-state σ, and a bath, which includes
the rest of the electrons, see Fig. 1. Thus, the total Hubbard
Hamiltonian is divided into the Hamiltonian of the
system, HS, the Hamiltonian of the bath, HB, and the
coupling between system and bath, Hc. The Hamiltonian
becomes

Htot ¼
X

k;σ

ðϵk þ μcÞc†kσckσ þ U
X

i

ni↑ni↓; ð1Þ

¼ HS þHB þHc; ð2Þ

HS ¼ ðϵk0 þ μc þ Unσ̄Þc†k0σck0σ ¼ ξc†k0σck0σ; ð3Þ

HB ¼
X

ðk;σ0Þ≠ðk0;σÞ
ðϵk þ μcÞc†kσ0ckσ0

þU
N

X

σ0

X

k1 ;k2 ;
k3 ;k4
≠ðk0 ;σÞ

δk1þk3;k2þk4c
†
k1σ0

ck2σ0c
†
k3σ̄0

ck4σ0 ; ð4Þ

Hc ¼
U
N

X

k1 ;k2 ;k3
≠k0

δk1þk3;k0þk2ðc†k0σck1σc
†
k2σ̄

ck3 þ H:c:Þ;

¼ U
N
ðC†σ ⊗ Bσ þ H:c:Þ; ð5Þ

Cσ ¼ ck0σ; ð6Þ

Bσ ¼
X

k1 ;k2 ;k3
≠k0

δk1þk3;k0þk2ck1σc
†
k2σ̄

ck3σ̄; ð7Þ

where cð†Þkσ is an annihilation (creation) operator of an
electron in momentum k and spin-direction σ. ϵk is the
energy dispersion, μc is the chemical potential, U is the
Hubbard interaction, and N is the number of the lattice
sites. Note that the coupling between the system and the
bath corresponds to a part of the two-particle interaction.
Starting from the von Neumann equation for the density

matrix of the full system, ðd=dtÞρðtÞ ¼ −i½H; ρðtÞ�, we
derive the QME for the density matrix of the system in
second-order perturbation in Hc,

∂
∂t ρ

I
SðtÞ ¼ −

Z
t

t0

dstrB½HcðtÞ; ½HcðsÞ; ρISðsÞ ⊗ ρB��; ð8Þ

where ρISðtÞ is the density matrix of the system, i.e., the
single particle. We here use the interaction representation
ρIðtÞ ¼ eiHStρðtÞe−iHSt

and HcðtÞ ¼ eiðHS⊗1Bþ1S⊗HBÞtHce−iðHS⊗1Bþ1S⊗HBÞt.
The commutators in Eq. (8)) include terms such as [39]

C†σCσρSðsÞ ⊗ TrB½BσðtÞB†
σðsÞρB�

¼ C†σCσρSðsÞ ⊗ TrB

� X

k1;k2;k3

δk1þk3;k0þk2

× ck1σðtÞc†k2σ̄ðtÞck3σ̄ðtÞc
†
k3σ̄

ðsÞck2σ̄ðsÞc†k1σðsÞρB
�
: ð9Þ

This trace over three creation and three annihilation
operators including the time evolution by the full
Hamiltonian, only missing the scattering via (k0, σ),
appears in the second-order diagram for the self-energy
shown in Fig. 2.

FIG. 1. To derive an effective non-Hermitian Hamiltonian for
the single-particle dynamics in the Hubbard model in the context
of OQS, we divide the electrons into a system, including only one
particle, and the rest of the particles, acting as bath.

FIG. 2. Feynman diagram which describes the dynamics of the
QME in the second order. The slashed double lines correspond to
full Green’s function which do not include the scattering to k0.
The black triangle corresponds to the full two-particle vertex,
which does not include scattering via k0.

PHYSICAL REVIEW LETTERS 124, 196401 (2020)

196401-2



Because the amplitude of a single scattering process via
k0 vanishes in the limit of an infinite large bath, N → ∞,
the self-energy shown in Fig. 2 becomes the exact self-
energy in second-order perturbation in Hc (not U). Even
when considering higher-order perturbations inHc, we find
that the QME still can be described by the self-energy [39].
Collecting all terms in Eq. (8)), we obtain

∂
∂t ρ

I
SðtÞ ¼

Z
t

t0

ds½−iRe½Slðt − sÞ�½C†σCσ; ρISðsÞ�

þ iRe½Sgðt − sÞ�½CσC†σ; ρISðsÞ�
þ Im½Slðt − sÞ�ðfC†σCσ; ρISðsÞg − 2CσρISðsÞC†σÞ
þ Im½Sgðt − sÞ�ðfCσC†σ; ρISðsÞg − 2C†σρISðsÞCσÞ�;

ð10Þ

with

SlðtÞ ¼ ΣT
k0
ðtÞeiξt

SgðtÞ ¼ ½ΣR
k0
ðtÞ − ΣT

k0
ðtÞ�eiξt

where ΣT is the time-ordered self-energy, ΣR is the retarded
self-energy, and ξ ¼ ϵk0 þ μc þUnσ̄.
We see that the time evolution of the density matrix of a

single particle at ðk0; σÞ is governed by the self-energy
ΣR=T
k0

ðsÞ. However, because Eq. (10)) includes gain and loss
terms, i.e., 2CσρISðsÞC†σ and 2C†σρISðsÞCσ , the dynamics
cannot be described by an effective NHH alone.
We next fix the particle number of the system, which

corresponds to applying postselection. We restrict the
Hilbert space to states where c†k0σck0σ þ c†k0σ̄ck0σ̄ ¼ 1. We
furthermore assume the absence of magnetism, which
results in c†k0σck0σ ¼ ck0σc

†
k0σ

in the restricted Hilbert space.
Due to these restrictions, the gain and loss terms vanish in
Eq. (10)), and the commutators and anticommutators can
be summed up

∂
∂tρ

IPS
S ðtÞ

¼−i
Z

t

t0

dsðSeffðt−sÞρIPSS ðsÞ−ρIPSS ðsÞS†
effðt−sÞÞ ð11Þ

Seffðt − sÞ ¼ ΣR
k0
ðt − sÞeiξðt−sÞc†k0σck0σ; ð12Þ

where ρðIÞPSS ðtÞ is the density matrix with applied post-
selection. By using the Markov approximation, which
means ρSðsÞ → ρSðtÞ and t0 → −∞, we find that the
density matrix of a single particle under postselection
can be written as

∂
∂t ρ

PS
S ðtÞ ¼ −iðHeffρ

PS
S ðtÞ − ρPSS ðtÞH†

effÞ; ð13Þ

Heff ¼ H0 þ ΣR
k0
ðξÞc†k0σck0σ; ð14Þ

which corresponds to the von Neumann equation with an
effective NHH. Thus, the time evolution of the density
matrix of a single particle ðk0; σÞ is given by an effective
NHH including the self-energy, if postselection is applied
[50]. We note that the frequency dependence of the self-
energy has vanished because of the Markov approximation.
However, in the context of SCS, the Green’s function is

described by an effective NHH without postselection
[40,42–44,46–48]. To clarify the reason why postselection
is not necessary in this context, we will now introduce the
retarded Green’s function in the steady state using the
density matrix form, which is given as GR

OQSðtÞ ¼
−iΘðtÞTr½ðCðtÞC†ð0Þ þ C†ð0ÞCðtÞÞρSSS ⊗ ρB�. Here, ρSSS is
the density matrix of the system in the long-time limit
(steady state) [51] and CðtÞ ¼ eiHtottCe−iHtott. Combining
the density matrix, ρSSS , with the creation operator, C†, we
define the density matrix describing the single-particle
Green’s function, ρRGFS ¼ C†ρSSS þ ρSSS C†. Thus, we can
rewrite the Green’s function as

GR
OQSðtÞ ¼ −iΘðtÞTr½CρRGFS ðtÞ�;

where the time evolution of ρRGFS ðtÞ is given by the QME
in Eq. (10)).
When considering a system which includes only a single

particle, ðk0; σÞ, ρRGFS ðtÞ is given by the following matrix
element, jσih0j, where jσi ¼ c†k0;σj0i. Gain and loss terms
vanish in the time evolution for this matrix element,
because C†jσih0jC ¼ Cjσih0jC† ¼ 0. Therefore, the QME
can be written as

∂
∂t ρ

I RGF
S ðtÞ ¼ −i

Z
t

t0

dsðSeffðt − sÞρI RGFS ðsÞ

− ρI RGFS ðsÞS†
effðt − sÞÞ ð15Þ

⇒ −iωρRGFS ðωÞ − ρRGFS ðt0Þ; ð16Þ

¼ −iðHeffðωÞρRGFS ðωÞ − ρRGFS ðωÞH†
effðωÞÞ;

¼ −iHeffðωÞρRGFS ðωÞ; ð17Þ

HeffðωÞ ¼ H0 þ ΣR
k0
ðωÞc†k0;σck0;σ: ð18Þ

The equality in Eq. (17)) holds because ρRGFS is proportional
to jσih0j and ρRGFS H†

eff becomes zero. Then, the Green’s
function becomes

GR
OQSðωÞ ¼ −iTr½CρRGFS ðωÞ� ¼ 1

ω − ξ − ΣR
k0
ðωÞ : ð19Þ

We here have demonstrated the following statements:
first, the Green’s function of a single particle described as
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an OQS and its effective NHH is identical to the Green’s
function and its NHH in closed equilibrium systems.
Second, the dynamics of ρPSS and ρRGFS are described by
the same equations, Eqs. (11)) and (15)). We can conclude
that the effective NHH describing the dynamics under
postselection is identical to the effective NHH describing
the Green’s function in SCS. Thus, we can analyze non-
Hermitian phenomena, which are observable in OQSs
under postselection, by studying the spectral function
AðωÞ ¼ −ð1=πÞImGR

OQSðωÞ in equilibrium or the nonequi-
librium steady state. While postselection becomes increas-
ingly difficult in large systems, the analysis of spectral
properties remains feasible. We note that non-Hermitian
properties may occur in different response functions than
the single-particle spectral function and that the correspon-
dence between the NHH in the density matrix under
postselection and the NHH in the response function
depends on the kind of the postselection. Third, because
the density matrix describing the Green’s functions in the
context of OQS is given by the off-diagonal matrix element,
i.e., j↑ih0j, gain and loss terms vanish in the QME, and
postselection is unnecessary to derive an effective NHH.
We note that, even if we consider larger systems, for
example a system including (k0;↑) and (k0;↓), gain and
loss contributions in the QME for the Green’s function
vanish [39].
Dynamics of the Hubbard model in the quantum master

equation.—Finally, we use the above-introduced QME to
describe single-particle properties in the Hubbard model on
a 2D square lattice. We furthermore show that the Markov
approximation, which ignores the memory effect of the
QME dynamics, fails to describe the full spectral function
in the Mott phase of the Hubbard model in which non-
Markovian dynamics plays an important role.
We have shown above that the time evolution of the

density matrix is determined by the self-energy in the
QME. We here use the dynamical mean field theory
(DMFT) combined with the numerical renormalization
group (NRG) to calculate an approximate self-energy
[52–54]. Using the self-energy obtained by DMFT com-
bined with NRG in the QME, Eq. (10)), we show the
relaxation dynamics of the density matrix into the steady
state, and demonstrate that the spectral function calculated
by the QME approach is identical with the spectral function
directly obtained by DMFT/NRG.
In Fig. 3, we compare the spectral functions calculated

by the QME and by DMFTand NRG for the weak-coupling
regime [Fig. 3(a)] and the Mott insulator [Fig. 3(c)] for
k0 ¼ ð0.4π; 0.4πÞ. We furthermore include a comparison
between the QME approach using the Markov approxima-
tion and the full dynamics. In the weak-coupling regime,
the spectral functions obtained by DMFT and the QME
with and without Markov approximation agree with each
other. Figure 3(b) shows the time evolution of the diagonal
elements of the density matrix with and without Markov

approximation in the QME, Eq. (10)). In the weak-coupling
regime, memory effects are not important and therefore the
Markov approximation works well. The dynamics without
memory effects is given by an exponential decay as shown
in Fig. 3(b). We conclude that the Markov approximation
can describe the full dynamics of the system in the weak-
coupling regime, Figs. 3(a) and 3(b).
In the Mott-insulating phase, shown in Fig. 3(c), the non-

Markov spectral function does also agree with the spectral
function obtained by DMFT and NRG. On the other hand,
the spectral function calculated with the Markov approxi-
mation is nearly zero. In the Mott insulating regime, the
Markov approximation describes strong dissipation due to
the strong scattering with the bath electrons and the
resulting spectral function has only a small and wide peak.
We note, however, that the integral of over the frequency is
unity. Non-Markovian dynamics is essential to correctly
describe the strongly interacting system. Both peaks in the
spectral function are described by quasiparticles which
follow non-Markovian dynamics. In Fig. 3(d), we show the
dynamics of the diagonal elements of the density matrix
comparing between Markovian and non-Markovian
dynamics. Both approaches show a strong decay into the
same steady state. Additional to the strong decay of the
matrix element of the density matrix, the non-Markovian

(a) (b)

(c) (d)

-

FIG. 3. Spectral function and the time evolution of the diagonal
elements into the steady state in the weak-coupling regime and in
the Mott insulating phase. The parameters in panels (a) and (b)
are as follows: ϵk ¼ −0.49,μc ¼ −0.2, U ¼ 0.4, and the temper-
ature T ¼ 0.001. The parameters in panels (c) and (d) are as
follows: ϵk ¼ −0.12, t ¼ 0.1, μc ¼ −0.8, U ¼ 1.6,T ¼ 0.00006.
The blue, red, and green lines in (a) and (c) show the spectral
function as calculated by the Green’s function, non-Markov QME
[Eq. (15))], and the Markov QME [Eq. (13))], respectively. The
blue and the red lines in (b) and (d) show the dynamics of the
diagonal elements j0ih0j and j↑ih↑j from the initial state
ρi ¼ j↑ih↑j. The full lines and the dashed lines correspond to
the non-Markovian dynamics and the Markovian dynamics,
respectively.
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dynamics show a strong oscillatory behavior of the occu-
pation number.
In the Supplemental Material [39], we perform a similar

analysis for the periodic Anderson model, showing that
also in this model the spectral function of a small system
described as an OQS and its effective NHH are identical to
the Green’s function and its NHH in closed equilibrium
systems.
Summary and discussion.—By analyzing the Hubbard

model as an OQS, we have proved that the effective NHH
appearing in the context of OQS and equilibrium Green’s
functions are identical. We have demonstrated that the
spectral function of a single particle described as an OQS is
given by the same non-Hermitian Hamiltonian describing
the density matrix of the particle under postselection. Thus,
non-Hermitian phenomena that have been analyzed in the
dynamics of a system under postselection can also be
studied by analyzing spectral functions both in OQS and
SCS without postselection. We have also shown that
postselection is not necessary to derive a NHH from the
spectral function, because off-diagonal elements govern the
dynamics of the spectral function, and gain and loss
contributions automatically vanish. In the process of
deriving the QME for a single particle, we have succeeded
in showing that Feynman diagrams, e.g., representing the
self-energy, describe the non-Markovian dynamics of a
fermionic system coupled to a fermionic bath. This
technique might also be applied to other systems, such
as QuBits coupled to fermionic baths. Finally, we have
demonstrated the importance of non-Markovian dynamics
to describe the dynamics in the strongly correlated regime.
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