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We present a method to measure the very small interfacial concentration of a contaminant that is
irreversibly adsorbed on the interface of a bubble or droplet. It is an application of the linear theory of shape
oscillation which relates the Gibbs elasticity to the damping, extended by numerical simulations to deal
with moving droplets. It explains previous unexpected observations on the effect of contamination at
various oscillation wavelengths. The experimental procedure is easy to implement and can thereby deeply
enhance the analysis of most systems involving uncontrolled contamination.
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Multiphase flows with drops or bubbles are widely
encountered in industrial processes (chemical reactors,
extraction columns, spraying and combustion devices) as
well as in soft materials and biological applications
(advanced materials, medicine), the governing physical
phenomena at droplet scale being generally investigated
through laboratory dedicated experiments. An important
issue associated to these flows is the level of interface
contamination due to chemical or biochemical impurities.
Even if they are present in residual concentration, such
contaminants have a drastic impact on the two-phase
flow dynamics. Several hydrodynamics features can be
strongly altered such as bubble-bubble interactions [1] or
the rates of transfer across the interfaces [2]. In particular,
the Marangoni stresses at a drop surface that result
from buoyancy-induced motion strongly reduce the settling
velocity as compared to clean conditions [3–7]. The
presence of adsorbed contaminants leads generally to
discrepancy between experimental observations and sim-
ulation predictions [8,9], making difficult the establish-
ment of reliable predictive laws. However, measuring
minute interfacial concentrations of a droplet is challeng-
ing and beyond the reach of previous experimental
techniques. This Letter demonstrates that it is possible
to measure the Gibbs elasticity of a rising droplet from
the analysis of the free shape oscillations, which naturally
take place when a nonspherical droplet is released from
rest, and to jointly access the value of the interfacial
tension. Then, the surface concentration can be estimated.
The strength of this method lies in the fact that the
oscillation damping rate is highly sensitive to small
variations of surface concentration.

Let us review existing experimental methods of surface
concentration assessment. Methods relying on the meas-
urement of the interfacial tension, like the robust pendant
drop method, are not suitable for this purpose when the
variation of tension lies in the range of accuracy of the
method, typically of several percents, mainly depending on
the droplet volume [10]. In the same way, the quantification
of the settling velocity cannot be used for this because it is
sensitive to contamination only in a narrow range of surface
concentration [5]. Among the few available techniques,
most have been applied to free-surface flows, relying on
optical methods such as ellipsometry [11] or reflected
second-harmonic generation [12], or based on the attenu-
ation rate of gravity-capillary surface waves [13] or on the
fluorescence intensity of a tagged surfactant obtained by
stroboscopy [14]. Unfortunately, none of these methods is
either easy to carry out with any type of contaminant or to
implement within a dispersed two-phase flow. Hosokawa
et al. [15] evaluated the surface concentration profile of a
rising drop using spatiotemporal filter velocimetry, which
gives access to the velocity fields in the vicinity of the
interface. This method is however restricted to droplet
motion in Stokes regime and is difficult to implement in
real flow conditions.
The experimental procedure presented in this Letter only

requires a standard high-speed camera able to record
sequences of the shape of a moving droplet at a rate of
a few thousand Hertz over a second. It provides a simple
way to assess the surface concentration of either a droplet
or a bubble based on a simple analysis of the shape
oscillation dynamics. An initial perturbation of the droplet
shape induces oscillations driven by surface tension and
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damped by viscosity. In perfectly clean conditions, well-
established theoretical works describe the linear shape
oscillation dynamics as a series of eigenmodes [16–19]
and predict the frequencies and damping rates, provided the
effect of gravity can be neglected and the droplet center is
immobile. In experiments involving rising droplets in a
stagnant liquid, Abi Chebel et al. [20] measured damping
rates of oscillation that were significantly higher than
theoretical predictions for modes of lower orders but that
converged towards predictions for modes of higher orders.
The authors suggested that this surprising result could be
caused by a subtle coupling between the gradient of
interfacial concentration resulting from droplet translation
with that generated by shape oscillation. In this Letter, we
show that this interpretation is incorrect thanks to compar-
isons between a direct numerical simulation, which
accounts for the effect of surfactants on the rising drop
dynamics, and the linear theory, which predicts eigenmodes
of shape oscillation by accounting for the Gibbs elasticity
of the interface [21] but by neglecting translation. The
numerical simulation is first employed to demonstrate that
the rising motion does not influence the shape oscillation
although it does determine the average profiles of con-
taminants along the interface. Then, the experimental
observations of Abi Chebel et al. [20] are shown to be
fully explained by the theory [21], which proves that
measuring shape oscillations is a relevant way to assess
the surface concentration. This opens the way to reliable
in situ determination of the contamination level within
experimental laboratory devices or industrial facilities
involving dispersed two-phase flows.
Numerical simulation allows to disentangle the effect of

gravity from that of interface contamination on the drop
dynamics. For a clean droplet, the numerical study of
Lalanne et al. [8] revealed that drop translation does not
affect the oscillation provided the Weber number We based
on the rise velocity remains small. For a contaminated
droplet, simulations of Piedfert et al. [22] confirm this
conclusion for the oblate-prolate oscillation mode. Here, an
oscillating surfactant-ladden droplet of radius R ¼
0.62 mm is considered, with an initial shape directly issued
from videos of a heptane droplet released in water from a
capillary [20], involving several deformation modes at
moderate amplitudes (see Fig. 1 and Table II). In the
simulation, the drop rise velocity is initialized at zero, with
an uniform interface concentration Γ of surfactant which is
related to the surface tension σ by Henry’s equation σ ¼
σclean − R̄TΓ (σclean being the value without surfactants, T
the Kelvin temperature and R̄ the gas constant). The
surfactant is assumed to be insoluble, i.e., the total amount
adsorbed at the interface remains constant. The Navier-
Stokes equations are solved on a structured mesh by a finite
volume method. The interface is captured by means of the
Level-Set method, with a mesh size element of R=96
according to a technique previously validated to simulate

drop dynamics [22,23]. The surfactant concentration is
computed along the oscillating interface through a con-
vective-diffusion equation [3,24] and the Marangoni
stresses rising from gradients of surface concentration
are modelled as a discontinuity of the viscous tangential
stresses (see Ref. [22] for more details). The drop shape
oscillation is simulated during its rise. Both translating and
oscillating motions lie in the inertial regime (Reynolds
numbers associated to each motion are large, see Table I);
the Weber number We is small enough to ensure a quasi-
spherical drop shape at steady state (aspect ratio of 1.01).
Figure 1 shows an excellent agreement between exper-
imental and computed shapes during the rise. As the drop
accelerates, its shape periodically changes and its rise
velocity is shown to oscillate [see Fig. 2(a)] because of
periodic variations of the added-mass force acting on the
droplet [25]. Surfactant concentration variations at the
surface are due to both changes in local interfacial area
and advection by the tangential velocity. In particular, the
translation strongly influences the interfacial distribution of
surfactants by transporting them to the rear of the droplet,
within a typical timescale R=V∞ of same order as the
oscillation dominant time scale given by the period T2 of
the n ¼ 2 oblate-prolate mode: here, R=V∞ ≈ 1.6T2. This
leads to the development of high surface concentration
gradients and Marangoni stresses that slow down the

FIG. 1. Computed shapes of an oscillating rising droplet. Time
sequence during the transient stage and comparison with the
experimental drop shapes (red lines). Color levels correspond to
the computed surface concentration of surfactant, normalized by
Γeq. Distance between shapes are not to scale. g is the gravity
acceleration.
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droplet. The drop terminal velocity V∞ is very close to that
of a solid particle. As expected from the substantial value
of the Marangoni number (around 70), the Marangoni
stress is strong enough to eventually cancel the internal
drop motion once oscillations are damped. During the
transient, the dynamics of the oscillations is analyzed until
time 5T2 where their amplitudes become negligible and
droplet velocity has reached 60% of V∞. To this purpose,
the drop shape is decomposed as a series of eigenmodes,
according to Eq. (1):

rðθ; tÞ ¼
X

n

anðtÞPn½cosðθÞ�; ð1Þ

where r and θ are the spherical coordinates of the interface in
the frame centered on the droplet center, an the amplitude of
mode n and Pn the corresponding Legendre polynomial.
Figure 2(a) shows the time evolution of the amplitudes of
modes 2 to 5. Each mode exhibits a clear dominant
frequency ωn and an average damping rate βn, which are
identified through the fit anðtÞ¼anð0ÞPn½cosðθÞ�cosðωntÞ×
expð−βntÞ. For each mode, ωn and βn are compared to the
prediction of the linear theory [21], which neglects gravity
and considers small amplitude. Figure 2(b) shows that a
remarkable agreement is obtained for both ωn and βn for
n ¼ 2–6, with a discrepancy smaller than 0.5% for ωn and
5% for βn. Therefore, even though the concentration profile
of surfactants at the interface radically differs from that
of a nonmoving droplet, the present comparison proves
that gravity does not noticeably affect the oscillations.
Marangoni stresses associated to translation and oscillation
exist simultaneously. However, their roles upon the droplet
dynamics are different. The former, dominant in amplitude,
is responsible for a decrease of the translation velocity.
The latter alone is responsible of a significant increase of the
oscillation damping for modes of low order [22]. We can
thus conclude that the Lu and Apfel’s theory [21] of
oscillation, which neglects gravity, can be used to describe
the shape oscillation of a contaminated rising droplet,
provided oscillation amplitudes are moderate (less than
1=5 of R) and the average shape is spherical (low We).
Based on the previous conclusions, the experimental

results obtained by Abi Chebel et al. [20] are analyzed under
the light of Lu and Apfel’s theory [21]. In that experiment,

heptane droplets of various sizes (0.3≤R≤1.8mm) are
formed at a capillary tip and released in water by a mild
jolt of the capillary. At the end of the recorded sequence—
terminal stage not always reached—the respective ranges of
Reynolds andWeber numbers are 20–500 and 0.01–1.4, with
an aspect ratio always smaller than 1.12. Since the droplets
are initially deformed, damped shape oscillations are
observed while the droplets rise. By using a high-speed
camera with a magnifying lens, images of 324 × 864 pixels
of the drop shape evolutions are obtained at a frame rate of
order 104 s−1. The fact that the measured drop rise velocities
always match that of solid particles supports the assumption
of contaminated interfaces. The oscillation time scales are
obtained by means of decomposition of drop shapes into
spherical harmonics by Eq. (1) (see Ref. [20] for the detailed

TABLE I. Physical parameters for an heptane droplet in water: ρo and ρi are the densities of outer and inner phase respectively,
μo and μi their dynamic viscosities, σeq and Γeq the interfacial tension and the surface concentration at equilibrium.

Reosc ¼ ρo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσeq=ρoR3Þ

q
R2=μo is the Reynolds number of oscillation, Re∞ ¼ 2ρoV∞R=μo the rise Reynolds number at steady state

with V∞ the terminal velocity, We ¼ 2ρoV2
∞R=σeq the Weber number, E ¼ R̄TΓeq=σeq the elasticity number and Ma ¼ R̄TΓeq=ðμV∞Þ

the Marangoni number.

R
(mm)

ρi
( kg=m3)

ρo
( kg=m3)

μi
(mPa.s)

μo
(mPa.s)

σclean; σeq
(mN/m)

Γeq

(mol=m2)
g

(m=s2) Reosc Re∞ We∞ E Ma

0.62 684 998.2 0.41 1.0 51.6, 47.1 1.86 × 10−6 9.81 171 79 0.1 0.1 71

FIG. 2. Simulation results (parameters from Tables I and II).
(a) Time evolution of the rise Reynolds number ReðtÞ ¼
2ρoVðtÞR=μo, with VðtÞ the instantaneous droplet velocity,
normalized by the Reynolds number at terminal stage Re∞,
and of the oscillation amplitudes anðtÞ for modes 2–5 normalized
by R; (b) comparison of angular frequency ωn and damping rate
βn between simulation and theory [21].
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methodology); frequencies anddamping rates ofmodes 2 to 5
are presented in Fig. 3. Experimental frequencies ωn;exp are
found in agreement with the theoretical prediction for clean
droplets ωn;clean [19]. To the contrary, measured damping
rates βn;exp are up to 2.5 times larger than the theoretical value
for clean droplets βn;clean [19]. In Fig. 3, ωn;exp and βn;exp are
compared to the theoretical values ωn;th and βn;th from
the theory [21] that still ignores gravity but accounts

for insoluble surfactant effects: ωn;th and βn;th are
computed by using Eqs. (7)–(9), (17), and (18) from
Ref. [21], which are recalled in a Supplementary Material
[26]. Note that this theory of shape oscillation, also discussed
in [27,28], writes the coupling between linearized Navier-
Stokes and surfactant transport equations. Two unknown
parameters are required to computeωn;th andβn;th: the surface
tension at equilibrium σeq and the normalizedGibbs elasticity
E ¼ −ðΓeq=σeqÞð∂σ=∂ΓÞeq, where subscript “eq” denotes
equilibrium values. In Fig. 3, the values of these parameters
have been adjusted to provide the best fit of experimental
results: σeq ¼ 47.5� 1.5 mN=m and E ¼ 0.1� 0.01. It
leads to predictions of both ωn;th and βn;th which are in
excellent agreement with all the experimental values from
modes 2 to 5 and all droplet sizes. The fact that a unique value
of E was identified for all experimental runs suggests that an
irreversible adsorption process took place prior to the
measurements, making relevant to consider insoluble con-
taminants. Figure 3 shows that the theory [21] provides the
interpretation of the experimental observations ofAbi Chebel
et al. [20]: the enhancement of the damping rate (relative to
βn;clean) diminishes when the order of the mode increases.
Thus, the fact that the model describes all oscillation mode
dynamics for all droplets constitutes a strong validation of the
overall analysis. Sincewe consider low surface coverage, it is
reasonable to assume a Henry isotherm in order to relate the
Gibbs elasticity to the average interface concentration:
E ¼ R̄TΓeq=σeq. Figure 4 shows the evolution of the
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FIG. 4. Evolution of ωn;th (dashed lines) and βn;th (continuous
lines), normalized by their respective values ωn;clean and βn;clean,
as a function of Γeq. Parameters are in Table I.
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FIG. 3. Experimental values ωn;exp and βn;exp for oscillation
modes n ¼ 2–5 from [20], compared to the theoretical predic-
tions ωn;th and βn;th from [21] with σeq ¼ 0.0475 N/m and E ¼
0.1 and to the theoretical values ωn;clean and βn;clean (E ¼ 0,
same σeq).

TABLE II. Initial drop shape in the simulation (parameters of Table I), experimentally measured after drop detachment.

n 0 1 2 3 4 5 6

anð0Þ=R 0.9912 0.0000 0.1858 −0.0644 0.0555 −0.0351 0.0273
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frequency ωn;th and the damping rate βn;th when varying Γeq.
It turns out thatωn;th decreases only slightly when increasing
Γeq. Therefore, measuring the frequencies alone cannot lead
to an accurate estimate of Γeq whereas it provides an accurate
value of σeq (like in the study of Ponce et al. [29]). On the
other hand, the high sensitivity of βn;th to Γeq (i.e., toE), even
at low interface coverage, allows an accurate determination of
the contamination level from the measurement of the damp-
ing rates of first oscillationmodes.Applying this procedure to
the experimental results of Abi Chebel et al. [20] leads
to Γeq ¼ 1.910−6 � 0.210−6 mol=m2.
For a contaminated droplet, the present analysis shows

that the Marangoni force induced by the gravity-driven
motion has a negligible influence on the shape-oscillation
dynamics as compared to a nonrising droplet. A strong
consequence for experiment design is that microgravity
conditions [30] or acoustic trapping [31] are unnecessary to
produce shape oscillations that follow the theory [21]: We
≤ 1 is sufficient for a rising drop or bubble. This allows us
to propose a method for measuring the Gibbs elasticity and
deducing the surface concentration of surfactants present at
low concentration: (1) disturb droplet shape (by release
from a capillary tube by a small jet or a mild jolt), (2) record
the time evolution of the interface, (3) decompose the shape
into spherical harmonics to determine frequencies and
damping rates of a few modes, (4) use theory [21] to
determine the equilibrium surface tension from frequencies
and the Gibbs elasticity from dampings, (5) check that same
values are obtained for all modes, and (6) compute surface
concentration from Henry’s isotherm. The use of such an
isotherm is justified for low interface coverage (inducing a
surface tension decrease of a few mN/m) and is more
suitable for surfactants having short carbon chains [32]. For
applicability purpose (low We), we recommend a maximal
size of several millimeters for droplets and d ¼ 1 mm for
bubbles. The method works well when ω2 > β2, allowing
for several oscillation periods to be recorded, which is the
case with not too highly viscous fluids. This method is
simple and can be easily implemented in various experi-
ments. We therefore believe that it can be of great interest
for the investigation of many two-phase flows with surface
active contaminants at uncontrolled levels, including soft or
biological media.

*Benjamin.Lalanne@ensiacet.fr
[1] S. Takagi and Y. Matsumoto, Annu. Rev. Fluid Mech. 43,

615 (2011).
[2] F. H. Garner and A. Hale, Chem. Eng. Sci. 2, 157 (1953).
[3] V. G. Levich, Physicochemical Hydrodynamics (Prentice-

Hall, Englewood Cliffs, 1962).
[4] R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and

Particles (Academic Press, New York, 1978).

[5] R. Bel Fdhila and P. C. Duineveld, Phys. Fluids 8, 310
(1996).

[6] B. Cuenot, J. Magnaudet, and B. Spennato, J. Fluid Mech.
339, 25 (1997).

[7] K. J. Stebe and C. Maldarelli, J. Colloid Interface Sci. 163,
177 (1994).

[8] B. Lalanne, N. Abi Chebel, J. Vejrazka, S. Tanguy, O.
Masbernat, and F. Risso, Phys. Fluids 27, 123305
(2015).

[9] A. Weiner, J. Timmermann, C. Pesci, J. Grewe, M.
Hoffmann, M. Schlüter, and D. Bothe, Chem. Eng. Sci.
1, 100007 (2019).

[10] J. D. Berry, M. J. Neeson, R. R. Dagastine, D. Y. Chan, and
R. F. Tabor, J. Colloid Interface Sci. 454, 226 (2015).

[11] J. Hutchison, D. Klenerman, S. Manning-Benson, and C.
Bain, Langmuir 15, 7530 (1999).

[12] M. J. Vogel, A. H. Hisa, J. S. Kelley, and G. M. Korenowski,
Rev. Sci. Instrum. 72, 1502 (2001).

[13] J. R. Saylor, A. J. Szeri, and G. P. Foulks, Exp. Fluids 29,
509 (2000).

[14] S. L. Strickland, M. Shearer, and K. E. Daniels, J. Fluid
Mech. 777, 523 (2015).

[15] S. Hosokawa, Y. Masukura, K. Hayashi, and A. Tomiyama,
Int. J. Multiphase Flow 97, 157 (2017).

[16] J. W. S. Rayleigh, Proc. R. Soc. Lond. 29, 71 (1879).
[17] H. Lamb, Hydrodynamics (Cambridge University Press,

Cambridge, 1932).
[18] C. A. Miller and L. E. Scriven, J. Fluid Mech. 32, 417

(1968).
[19] A. Prosperetti, J. Méc. 19, 149 (1980).
[20] N. Abi Chebel, J. Vejrazka, O. Masbernat, and F. Risso,

J. Fluid Mech. 702, 533 (2012).
[21] H. L. Lu and R. Apfel, J. Fluid Mech. 222, 351 (1991).
[22] A. Piedfert, B. Lalanne, O. Masbernat, and F. Risso, Phys.

Rev. Fluids 3, 103605 (2018).
[23] B. Lalanne, L. R. Villegas, S. Tanguy, and F. Risso,

J. Comput. Phys. 301, 289 (2015).
[24] H. Stone, Phys. Fluids A 2, 111 (1990).
[25] B. Lalanne, S. Tanguy, and F. Risso, Phys. Fluids 25,

112107 (2013).
[26] See the Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.124.194501 for a prac-
tical form of the procedure to compute ωn;th and βn;th,
summarized from Ref. [21].

[27] Y. Tian, R. G. Holt, and R. E. Apfel, J. Colloid Interface Sci.
187, 1 (1997).

[28] N. Abi Chebel, A. Piedfert, B. Lalanne, C. Dalmazzone,
C. Noik, O. Masbernat, and F. Risso, Langmuir 35, 9441
(2019).

[29] A. Ponce-Torres, J. M. Montanero, M. A. Herrada, E. J.
Vega, and J. M. Vega, Phys. Rev. Lett. 118, 024501
(2017).

[30] R. E. Apfel et al., Phys. Rev. Lett. 78, 1912 (1997).
[31] T. J. Asaki, D. B. Thiessen, and P. L. Marston, Phys. Rev.

Lett. 75, 2686 (1995).
[32] D. F. Evans and H. Wenneström, The Colloidal Domain:

Where Physics, Chemistry, Biology, and Technology Meet
(Wiley-VCH, New York, 1999).

PHYSICAL REVIEW LETTERS 124, 194501 (2020)

194501-5

https://doi.org/10.1146/annurev-fluid-122109-160756
https://doi.org/10.1146/annurev-fluid-122109-160756
https://doi.org/10.1016/0009-2509(53)80037-0
https://doi.org/10.1063/1.868787
https://doi.org/10.1063/1.868787
https://doi.org/10.1017/S0022112097005053
https://doi.org/10.1017/S0022112097005053
https://doi.org/10.1006/jcis.1994.1094
https://doi.org/10.1006/jcis.1994.1094
https://doi.org/10.1063/1.4936980
https://doi.org/10.1063/1.4936980
https://doi.org/10.1016/j.cesx.2019.100007
https://doi.org/10.1016/j.cesx.2019.100007
https://doi.org/10.1016/j.jcis.2015.05.012
https://doi.org/10.1021/la9901480
https://doi.org/10.1063/1.1337069
https://doi.org/10.1007/s003480000119
https://doi.org/10.1007/s003480000119
https://doi.org/10.1017/jfm.2015.352
https://doi.org/10.1017/jfm.2015.352
https://doi.org/10.1016/j.ijmultiphaseflow.2017.08.007
https://doi.org/10.1017/S0022112068000832
https://doi.org/10.1017/S0022112068000832
https://doi.org/10.1017/jfm.2012.205
https://doi.org/10.1017/S0022112091001131
https://doi.org/10.1103/PhysRevFluids.3.103605
https://doi.org/10.1103/PhysRevFluids.3.103605
https://doi.org/10.1016/j.jcp.2015.08.036
https://doi.org/10.1063/1.857686
https://doi.org/10.1063/1.4829366
https://doi.org/10.1063/1.4829366
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.194501
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.194501
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.194501
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.194501
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.194501
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.194501
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.194501
https://doi.org/10.1006/jcis.1996.4698
https://doi.org/10.1006/jcis.1996.4698
https://doi.org/10.1021/acs.langmuir.9b01594
https://doi.org/10.1021/acs.langmuir.9b01594
https://doi.org/10.1103/PhysRevLett.118.024501
https://doi.org/10.1103/PhysRevLett.118.024501
https://doi.org/10.1103/PhysRevLett.78.1912
https://doi.org/10.1103/PhysRevLett.75.2686
https://doi.org/10.1103/PhysRevLett.75.2686

