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Parity-time (PT) symmetry has recently been opening exciting directions in photonics, yet the required
careful balance of loss and gain has been hindering its widespread applicability. Here, we propose a gain-
free route to PT symmetry by extending it to complex-frequency excitations that can mimic gain in passive
systems. Based on the concept of virtual absorption, extended here to implement also virtual gain, we
implement PT symmetry in the complex-frequency plane and realize its landmark effects, such as broken
phase transitions, anisotropic transmission resonances, and laser-absorber pairs, in a fully passive, hence
inherently stable, system. These results open a path to establish PT symmetry and non-Hermitian physics
in passive platforms.
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Non-Hermitian wave physics has been gaining increased
attention since the discovery and demonstration of its
intriguing wave phenomena, such as single-mode lasers
[1–2], unidirectional invisibility [3–5], PT-symmetric laser-
absorber pairs [6–8], anisotropic transmission resonances
(ATRs) [9–10], broken phase regimes, and exceptional
points (EPs) [11–15]. These novel phenomena have been
discovered within the context of parity-time (PT) symmetry
[16], a special type of symmetry that satisfies inversion upon
space and time, stemming from pioneering works in theo-
retical quantum physics [17–19]. PT symmetry was later
fruitfully applied to classical settings [15], from photonics
[4], electronics [20–21], plasmonics [22–23], acoustics [24],
and metamaterials [25–27].
PT-symmetric systems in classical wave physics require

the presence of gain. In optics, for example, PT symmetry
implies that the complex refractive index satisfies
nðrÞ ¼ n�ð−rÞ, resulting in a balanced gain-loss profile
Imnð−rÞ ¼ −ImnðrÞ. This requirement has hindered sev-
eral possibilities to implement and verify these concepts in
practical devices due to the challenge of implementing
sufficient gain in photonics and the incurrence of gain-
induced instabilities [28–31]. In an attempt to overcome
these issues, it has been argued that a weak form of PT
symmetry can be somewhat mimicked in purely lossy
systems [32–34].
Consider, for instance, the simplest case of two optical

modes with the same resonance frequency u0, different
decay rates γ0 þ γ and γ0 − γ, γ0 > γ > 0, and a real
coupling coefficient κ. The dynamics of the coupled system
are described by

d
dt

jΨi ¼ jH0jΨi; jΨi ¼
�
ψL

ψR

�
; ð1Þ

with effective Hamiltonian H0 ¼ ðu0þjðγ0þγÞ
κ

κ
u0þjðγ0−γÞÞ,

where ψα, α ¼ L, R is the amplitude of the α-mode
normalized such that jψαj2 represents its energy. An
analog to PT symmetry may be revealed by offsetting
the average decay rate, i.e., after the transformation
ð ψL
ψR
Þ ¼ e−γ0tðψ 0

L
ψ 0
R
Þ, for which the Hamiltonian becomes

HPT
0 ¼ ðu0þjγ

κ
κ

u0−jγÞ, respecting PT symmetry with parity

operator P ¼ ð0
1
1
0
Þ and time-reversal operator T indicating

complex conjugation. In this framework, the eigenvalue
spectra ωPT

� ¼ u0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2

p
sustain a broken phase

regime as γ crosses the EP at γEP ¼ κ. This tool has been
shown to verify some of the properties of PT symmetry in
passive systems [35], but it implies global attenuation and
requires postprocessing to actually observe the desired
scattering phenomena. More complex PT-symmetric
responses, such as ATRs or laser-absorber pairs, are not
available in this framework because of passivity and power
conservation.
In a different context, our group has recently introduced

the concept of “virtual absorption” [36–38], based on
which it is possible to mimic absorption in a system
without loss by exciting it with nonmonochromatic grow-
ing waves, enabling efficient energy trapping and, when
combined with nonlinearities, providing a powerful tool for
storage and release beyond the time-bandwidth limit [39].
Here, we extend this concept to “virtual gain” and realize
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“virtual PT symmetry” in an inherently passive and stable
material platform that oscillates at complex frequencies.
Our Letter extends the concept of PT symmetry in the
complex-frequency plane and enables observation of all
the properties of PT-symmetric systems without requiring
active elements, but instead considering complex-frequency
excitations.
Virtual gain.—Dual to virtual absorption, virtual gain

can be achieved by exciting a passive system with a signal
decaying in time. Consider a balanced transmission line
(TL), characterized by uniform loss γ0 > 0 [40] (see
Supplemental Material [41]) and excited by a voltage
signal v0ðz; tÞ ¼ Vþ

0 e
jωct−jβz oscillating at complex fre-

quency ωc ¼ ωþ jσ, with 0 < σ ≪ ω. As the decaying
signal flows through the TL, the time-average power
flow Jðz; tÞ ¼ ðjVþ

0 j2=2Z0Þe−2σtþ2ðσ−γ0Þz=vp, where Z0 is
the characteristic impedance and vp is the phase
velocity. In the monochromatic regime (σ ¼ 0), the signal
decays along the line at a rate dictated by the TL loss
[Fig. 1(a)]. However, if the decay rate σ of our signal is
equal to the uniform loss γ0, the power flow does not
depend on z at any instant in time. Further, when σ > γ0,
the power flow Jðz; tÞ grows along the propagation
direction, up to the signal precursor, mimicking gain in
a fully passive system.
Virtual PT symmetry.—More complicated is the imple-

mentation of balanced gain and loss at the same complex
frequency. We achieve virtual PT symmetry by loading
the TL with a pair of suitably tailored coupled resonators
[see Fig. 2(a)]. We design the system such that, after
transient it reaches a quasistationary state, in which
reflected and transmitted signals all oscillate in time
following the same complex-frequency dynamics. To
describe this response, we can use temporal coupled-
mode theory (CMT) [42]

d
dt

jΨi ¼ ðjH0 − ΓÞjΨi þDT jsþi;
js−i ¼ −jsþi þDjΨi; ð2Þ

where the input vector jsþi ¼ ðLðiÞ
RðiÞÞ is formed by power-

normalized amplitudes LðiÞ and RðiÞ for incoming waves

from left and right ports, and similarly, the output vector
js−i ¼ ðLðoÞ

RðoÞÞ for outgoing waves; the 2 × 2 real matrix D
describes the coupling between ports and the two modes,
and the matrix Γ ¼ 1

2
DþD accounts for the decay into

the ports. For complex-frequency excitation jsþi ¼
e−σtþjωtjs0þi with decay rate σ ¼ γ0, i.e., balancing the
average loss γ0 of H0 in Eq. (1), the scattering matrix S
connecting the output in the quasistationary state with the
input via js−i ¼ Sjsþi reads

SðωÞ ¼ −I2 þ jD
1

HPT
0 þ jΓ − ω

DT; ð3Þ

where I2 is the 2 × 2 identity matrix, and thePT-symmetric
Hamiltonian HPT

0 derived above determines the internal
dynamics. The S matrix in (3) obeys the relation
PTSðωÞPT ¼ S−1ðωÞ,ω ∈ R, identical to aPT-symmetric
system, despite the absence of gain. Hence, in the
quasistationary state we expect this system to support
all the exotic scattering phenomena expected in a system
with balanced loss and gain, such as ATR and CPA-
lasing [7–9].
The overall temporal response is defined by the interplay

between the transient process, related to the initial state
jΨð0Þi and the quasistationary process determined by the S
matrix. The entire dynamics is revealed solving Eq. (2): the
outgoing waves

js−i¼SjsþiþDejH
0
eff tD−1½DjΨð0Þi−ðSþI2Þjs0þi�; ð4Þ

where the eigenvalues of the matrix H0
eff ¼ H0 þ jΓ

represent the decay rates of the transient process. The
quasistationary response is governed by the first term on the
right-hand side of Eq. (4), whereas the transient process is
described by the second term, associated with the initial
state jΨð0Þi of the system and the initial amplitude js0þi of
the impinging waves. To observe virtual PT symmetry, we
carefully control the synergy between these two processes.
Virtual phase transition.—We implement these ideas in a

tailored electronic circuit [Fig. 2(a)]. The circuit is com-
posed of two coupled parallel RLC circuits with differential
conductance GL and GR. Their coupling is controlled

FIG. 1. Virtual gain: instantaneous signals in the quasistationary regime versus position z in a TL with uniform loss γ0, when the signal
decay rate (a) σ ¼ 0, (b) σ ¼ γ0, and (c) σ > γ0.
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by the capacitance Cc in parallel with conductance
Gc. Input signals are fed into the circuit by TLs with
impedance Z0. Virtual PT symmetry is achieved for jsþi ¼
e−γ0tþjωtjs0þi when ω ¼ ωPT ∼ ω0 ¼ 1=

ffiffiffiffiffiffiffi
LC

p
; in this

framework, the Hermiticity parameter G is embedded
in GL=R ¼ �Gþ fCþ 1=½Lðω2

PT þ γ20Þ�gγ0, and we set
Gc ¼ γ0Cc. Correspondingly, as the system reaches the
quasistationary state, it is fully analogous to the effective
PT-symmetric circuit [see Fig. 2(a)] consisting of balanced
gain and loss with resistances �R ¼ �1=G and renormal-
ized inductance L̃ ¼ Lð1þ γ20=ω

2
PTÞ [43]. The pair of

resonators is capacitively coupled via Cc. Schelkunoff
was the first to notice [44] that the impedance is an attribute
of both the medium and the wave that excites it. Here, by
tailoring the temporal profile of the impinging wave, we
effectively implement balanced gain and loss in a fully
passive circuit.
By exciting the system around the complex frequency

ωc ¼ ωþ jγ0 with ω ∼ ω0 and γ̂0 ≡ γ0=ω0 → 0, and
assuming that the coupling strengths ε̂ ¼ ð1=Z0Þ

ffiffiffiffiffiffiffiffiffi
L=C

p
between the TLs and the circuit and ĉ ¼ Cc=C between
the resonators are weak, of order Oðγ̂0Þ, and that the
internal loss of the resonators are small, γ̂L=R ≡
GL=R=ð2Cω0Þ ≤ Oðγ̂0Þ, the temporal CMT in Eq. (2)
is applicable up to first order with respect to γ̂0
(see Supplemental Material [41]), and we can
identify the parameters in Eq. (2) as u0 ¼ ω0ð1 − 1

2
ĉÞ,

κ ¼ ω0
1
2
ĉ, γ0 ¼ ðω0=2Þðγ̂L þ γ̂RÞ, γ ¼ ðω0=2Þðγ̂L − γ̂RÞ,

and D ¼ ffiffiffiffiffiffiffiffi
ω0ε̂

p
I2. A phase transition determined by H0

for the passive circuit [green lines in Fig. 2(b)] becomes
a PT-symmetric phase transition [dashed lines] deter-
mined by HPT

0 . Indeed, the eigenvalues of S in Eq. (3)
transition from being unimodular to a pair with reciprocal
moduli [9,45].
To complete the analogy and demonstrate that our

circuit is PT symmetric at the complex frequency, we
derive the relation between voltages vL=RðtÞ at the left-right

node [Fig. 2(a)] and mode amplitudes ψα, α ¼ L, R in
Eq. (2), �

vα
_vα

�
¼ 1ffiffiffiffiffiffi

2C
p

�
1 1

jω0 −jω0

��
ψα

ψ�
α

�
; ð5Þ

and between the incoming and outgoing voltage v�α at node
α ¼ L, R and the input and output in Eq. (2) [41]

v�α ¼
ffiffiffiffiffi
Z0

2

r
½αði=oÞ þ ðαði=oÞÞ��: ð6Þ

Virtual ATR.—Since at the chosen complex frequency
our circuit is PT symmetric, we expect that its response
supports all the exotic wave phenomena associated with PT
symmetry. Particularly, as the system reaches the quasista-
tionary state, we observe an ATR, i.e., a response for
which the reflectance from one port is zero, jS11j2 ¼ 0 at
ω ¼ ωPT ¼ ω0ð1þ δ̂Þ ∈ R, yielding

ε̂ ¼ ðγ̂L − γ̂RÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4δ̂ðĉþ δ̂Þ

q
ð7Þ

when we employ Eq. (3). PT symmetry ensures that
jS12j2 ¼ jS21j2 ¼ 1 and generally jS22j2 ≠ 0. Indeed, from
Eq. (3) we find jS22j2 ¼ 4ðγ̂L − γ̂RÞ2=ĉ2.
To verify this response, we need to minimize the

transient process, so that the system reaches quickly the
quasistationary state. Therefore, we calculate the decay
rates γtran of the transient process, given by the imaginary
part of the two eigenvalues of H0

eff . For a given value of
jS22j2, the condition that maximizes the decay rate γ<tran
of the eigenmode that lives longer is given by δ̂ ¼ − 1

2
ĉ,

γ̂R ¼ 0, ε̂ ¼ γ̂L þ ĉ, yielding

γ<tran ¼ γ0

"
2þ 2

jS22j
− Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

jS22j2
s #

; ð8Þ

corresponding to the fastest possible transient decay for
given jS22j. This quantity monotonically decreases with

FIG. 2. (a) Schematic of a virtual PT-symmetric circuit. In its quasistationary state, the system is mapped onto a PT-symmetric circuit
(inside the dashed circle) consisting of gain and loss balanced parallel L̃RC resonators, with resistance �R ¼ �1=G and renormalized
inductance L̃ ¼ Lð1þ γ20=ω

2
PTÞ: (b) The eigenvalue spectrum of the effective Hamiltonian of the system in (a) as a function of the

Hermiticity parameterG. In the quasistationary state, these curves (solid green lines) are mapped onto the dashed lines, corresponding to
a PT-symmetric transition. Here, γ̂0 ¼ ĉ ¼ 0.01.
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jS22j, hence a larger reflection contrast requires a larger
contribution from the transient process. We numerically
demonstrate a virtual ATR with jS22j ¼ 1, for which
γ<tran ¼ 4γ0. The virtual ATR occurs in the PT-symmetric
phase since ðjS11j2 þ jS22j2Þ=2 − jS12j2 < 1, which, from a
spectrum analysis of the S matrix in Eq. (3), corresponds to
the symmetric phases [9].
In Fig. 3, we perform time-domain scattering simulations

of the optimized system, for ω0 ¼ 2π × 50 MHz,
L¼10 nH, and γ̂0 ¼ 0.01, yielding Z0 ¼ ω0L=ε̂ ≈ 52 Ω,
where ε̂ ≈ 6γ̂0, since we have ε̂ ¼ γ̂L þ ĉ, ĉ ¼ 2γ̂L, and
γ̂L ≈ 2γ̂0. The initial voltage and current across capacitor
and inductor in each resonator are set to zero. In Fig. 3(a),
at t ¼ 0 we send an input signal (red curve) from the
left port and measure the (normalized) reflected signal
jv−LðtÞj2=jvþL ð0Þj2 (green), which rapidly decays to zero
after a short transient. In contrast, the transmitted signal
jvL→RðtÞj2=jvþL ð0Þj2 (blue) grows and finally decays in
perfect sync with the input signal as the system reaches the
quasistationary state, confirming unitary transmission.
Strikingly different is the response when sending the same
signal from the right port [Fig. 3(b)]: the reflected voltage
decays first due to the same transient process, but then
picks up energy, and in the quasistationary state follows the
excitation since jS22j ¼ 1. The transmitted signal follows
the same trend as in Fig. 3(a) due to reciprocity. During the
quasistationary state, at any instant in time, the total time-
averaged power flowing out of the system is twice the
incident one in this scenario [see inset in Fig. 3(b)],
mimicking gain. Remarkably, we achieve this phenomenon
in a purely passive system, where (virtual) gain is enabled
by the reactive energy stored at earlier times in the system,
and the suitable complex-frequency excitation.
Virtual absorber laser.—Another landmark feature of

PT-symmetric systems is the realization of an absorber
laser [6,7]. Here, we implement a virtual version of this
phenomenon in a passive circuit. We require that the
quasistationary scattering matrix S in Eq. (3) possesses a

pair of eigenvalues going to zero and infinity, respectively,
and thus the virtual absorber laser should operate in its
PT-broken phase. This stringent requirement is fulfilled
when the zero and pole of the S matrix coalesce at ω ¼
ωPT ¼ ω0ð1 − 1

2
ĉÞ, achieved in our circuit when δ̂ ¼ − 1

2
ĉ,

as γ reaches the threshold value γth ¼ 1
2
ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε̂2 þ ĉ2

p
.

Indeed, when ω ¼ ωPT and γ ∼ γth, the eigenvalues s�
of the S matrix are sþ ¼ 1=s�− ≈ −½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε̂2 þ ĉ2
p

=ðω0ε̂
2Þ�

ðγ − γthÞ.
In a conventional PT-symmetric laser absorber, lasing

occurs when the Hermiticity parameter reaches the lasing
threshold, beyond which the system becomes unstable.
For the same system, coherent perfect absorption (CPA)
can be achieved when the excitation matches the eigen-
vector js0þ;CPAi corresponding to the zero eigenvalue. In our
scenario, the analog of lasing corresponds to the decay of
the system into its quasinormal mode, sustained by the
initial energy stored in the resonators. Virtual CPA,
however, requires inputs with the same decay rate as the
transient of the virtual lasing mode, hence it may be
difficult to observe. Therefore, we employ monochromatic
waves at ωPT before t ¼ 0 to prepare the system in order to
have suitable initial states, so that the transient response is
suppressed. From Eq. (4), the initial state required to avoid
the transient is jΨð0Þi ¼ D−1ðSþ I2Þjs0þi [46], which is
reached at t ¼ 0 by exciting the system with jsPþðtÞi ¼
ejωPTtjsP;0þ i for t ≤ 0, and amplitude

jsP;0þ i ¼
��

1þ γ̂0
ε̂

�
þ γ̂0

ε̂
SðωPTÞ

�
js0þi: ð9Þ

In this preparation stage, jsP−ðtÞi ¼ ejωPT tjsP;0− i with

jsP;0− i ¼
��

1 − γ̂0
ε̂

�
SðωPTÞ − γ̂0

ε̂

�
js0þi: ð10Þ

In Fig. 4, we study the virtual CPA laser around the
threshold γth, i.e., γ ¼ γthð1 − δ̂γÞ. Interestingly, in contrast

FIG. 3. Demonstration of virtual ATR. Time-dependent signals vþL ðtÞ ¼ vþR ðtÞ incident from (a) the left and (b) right port. (a),(b) We
plot incident (red), reflected (green), and transmitted signals (blue). (Insets) Operation sketches in the quasistationary state. Here,
ω0 ¼ 2π × 50 MHz, L ¼ 10 nH, and γ̂0 ¼ 0.01. Thus, C ¼ 1=ðLω2

0Þ and γ̂R ¼ 0, ε̂ ≈ γ̂L þ ĉ, γ̂L ¼ γ̂0f1þ 1=½ð1þ δ̂Þ2 þ γ̂20�g,
δ̂ ¼ − 1

2
ĉ, and ĉ ≈ 4γ̂0 for ATR with jS22j ¼ 1. In addition, G1 ¼ 2γ̂L

ffiffiffiffiffiffiffiffiffi
C=L

p
, G2 ¼ 0, Cc ¼ ĉC, Gc ¼ γ̂0ĉ

ffiffiffiffiffiffiffiffiffi
C=L

p
, Z0 ¼

ffiffiffiffiffiffiffiffiffi
L=C

p
=ε̂,

and the input signals have γ0 ¼ γ̂0ω0 and ωPT ¼ ð1þ δ̂Þω0.
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to conventional CPA laser, our passive system allows
exploring regimes beyond the threshold γth without incur-
ring instabilities. Fixing ĉ ¼ ε̂ ¼ γ̂0, passivity γ̂L=R ≥ 0

determines δ̂γ ≥ 1 − ffiffiffi
2

p
, which crosses the threshold value

at δ̂γ ¼ 0. In the figure, we choose ω0 ¼ 2π × 50 MHz,
L ¼ 10 nH, and γ̂0 ¼ δ̂γ ¼ 0.01.
In Fig. 4(a), we excite the structure with the

CPA eigenvector jsCPAþ i ¼ e−γ0tþjωPTtjs0þ;CPAi, js0þ;CPAi ¼
ð1; jf−ĉ2 þ ½ð2γ=ω0Þ − ε̂�2g=ð2ĉ ε̂ÞÞT after t ¼ 0 (red and
blue lines). The system immediately reaches the quasista-
tionary CPA state, without a transient. Indeed, the output
curves (green, black) suddenly yield very small values.
Consistent with Eq. (10), when SðωPTÞjs0þ;CPAi ¼ 0 and
ε̂ ¼ γ̂0, the reflectance at time t ¼ 0− due to the incoming
monochromatic waves approaches the stationary value
jsP;0− i, which matches the incoming decaying signals at
time t ¼ 0þ. In the inset, we show the effect of the detuning
δ̂γ on the overall output signals Θ, i.e., the ratio of total
outgoing to incoming intensity. The red dot indicates the
result of the main panel at time t=ð2π=ω0Þ ¼ 15, in which
the absorption is limited to a finite value due to parasitics
in realistic simulations, whereas the black curve is for
ideal conditions (see Supplemental Material [41]). The
scenario drastically changes if we consider the input
js0þi ¼ ð 1 0 ÞT . As shown in Fig. 4(b), in this case the
outgoing waves (green, black) are significantly larger than
the incident one (red). The corresponding Θ coefficient,
i.e., the red dot, with the predicted Θ versus δ̂γ for ideal
conditions, confirms virtual lasing. Equation (9) ensures
that when ε̂ ¼ γ̂0, jsP;0þ i ≈ js0−i≡ SðωPTÞjs0þi near the
virtual lasing threshold, confirmed by our simulations.
The reflected signal jsP;0− i is suppressed at ε̂ ¼ γ̂0, follow-
ing Eq. (10).
Conclusions.—In this Letter, we have shown that

nonmonochromatic excitations oscillating at complex

frequencies enable the implementation of PT symmetry
in a fully passive system. We demonstrated transitions from
real to broken phases, ATR and CPA-laser operations in a
realistic circuit configuration without the need of active
elements, ensuring passivity and stability, which enables
exploring regimes beyond the lasing threshold. Practical
demonstrations prefer high-Q resonators with small damp-
ing, enabling more easily quasistationary responses without
fast decays of the signal. We believe that our results may
inspire the realization of PT-symmetric and non-Hermitian
physics in a variety of passive photonic, phononic, and
electronic systems, enabling an interesting playground for
classical and quantum optical phenomena without the need
of stringent requirements on gain.
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