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In the context of quantum metrology, optical cavity-QED platforms have primarily been focused on
the generation of entangled atomic spin states useful for next-generation frequency and time standards.
Here, we report a complementary application: the use of optical cavities to generate nonclassical
states of light for electric field sensing below the standard quantum limit. We show that cooperative
atom-light interactions in the strong collective coupling regime can be used to engineer generalized
atom-light cat states which enable quantum enhanced sensing of small displacements of the cavity field
even in the presence of photon loss. We demonstrate that metrological gains of 10–20 dB below the
standard quantum limit are within reach for current cavity-QED systems operating with long-lived
alkaline-earth atoms.
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Introduction.—The advent of quantum technologies
promises to bring with it significant advances in quantum
computation, simulation, and metrology, among others, by
utilizing resources such as entanglement and many-body
coherence to outperform classical analogs. For example,
while sensors that use classical resources are bounded in
their precision by the standard quantum limit (SQL), by
employing quantum states that are entangled or possess
nonclassical correlations one can realize quantum-
enhanced sensors [1] that operate with superior precision
bounded by the so-called Heisenberg limit (HL). For
sensors composed ofN particles or probes, the HL typically
bounds the sensing capability by a factor ∝ 1=

ffiffiffiffi
N

p
lower

than the SQL [2–7].
In the optical domain, development of quantum-

enhanced sensors using atom-light interactions in cavity-
QED systems has concentrated on the creation of entangled
atomic states through processes where the optical electro-
magnetic field is essentially only a mediator of interactions
between atoms [8–12]. This contrasts with microwave
cavities, where atom-light interactions have been used to
generate nonclassical states of the field. Example platforms
include Rydberg atoms [13,14], superconducting qubits
[15], and trapped ions [16,17], with potential sensing
applications that include the detection of single electrons
[18] and photons [19], searches for dark matter [20], and
quantum information processing [21]. In this work,
inspired by developments in the microwave domain, we
describe a protocol that realizes quantum-enhanced sensing
of optical electromagnetic fields.
The generation of nonclassical states for quantum-

enhanced sensing using the matter-light interaction in
single qubit systems requires experiments to operate in

the strong coupling regime, achieved when the matter-light
coupling rate 2g is larger than the decay rates of the qubit γ
and the cavity κ [22–24]. While this is feasible in the
microwave domain, it can be hard to attain in state-of-the-
art optical cavities. Here, we demonstrate that even when
g ≪ κ, the interrogation of a collective ensemble coupled to
a single cavity mode can be used for the preparation of
generalized atom-light cat states and quantum-enhanced
sensing of electromagnetic fields in the optical regime.
We propose to characterize weak optical fields by sensing
them as small coherent displacements of the state of the
cavity mode. Although optimal detection of this perturba-
tion of the cavity field is typically technically challenging,
we discuss an interferometric protocol based on time
reversal of the dynamics, which allows for nearly optimal
metrological performance using accessible observables
such as atomic inversion.
Our observations are relevant and directly applicable to

state-of-the-art optical cavities coupled to optical transi-
tions in alkaline-earth atoms, such as the narrow 1S0-3P1

transition in 88Sr. We predict in this system it will be
possible to reach 10–20 dB below the SQL operating with
∼105 atoms. More broadly, our protocol is also relevant to
other frequency regimes in platforms featuring similar
types of collective atom-light couplings [17,25–31].
Conceptually, our protocol is also of potential interest
for experiments sensing photon conversion of axionlike
particles as in Refs. [32,33].
Model.—We seek to realize a dispersive atom-light

coupling between a single mode of an optical cavity and
an ensemble of atoms each encoding a spin-1=2 degree of
freedom in an optical transition [Fig. 1(a)], described by the
Hamiltonian:
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Ĥ ¼ χâ†âŜx: ð1Þ
Here, â (â†) are destruction (creation) operators for the
cavity mode, Ŝx;y;z ¼

P
N
j¼1ðσ̂jx;y;z=2Þ are collective spin

operators with σ̂jx;y;z Pauli operators acting on atom j, and
we set ℏ ¼ 1 throughout this Letter. This interaction is a
generalization of that commonly engineered in microwave
cavity and circuit-QED platforms [22,23,34,35] and
similar to that engineered in optomechanics [30]. While
decoherence will play a role in any practical realization,
we will first focus on the nonclassical states which can
ideally be generated via the coherent dynamics described
by Eq. (1). Later, we will discuss how this effective
Hamiltonian can be engineered in an optical cavity, by
injecting a large coherent displacement into the cavity
tuned to be resonant with the atomic transition [Fig. 1(a)].
The dispersive atom-light interaction can be interpreted

as an Ŝx-dependent rotation of the cavity field, or alter-
nately generates a precession of the collective spin at a rate
controlled by the cavity occupation. The former under-
standing motivates its use in the generation of entangled cat
states composed of superpositions of bosonic coherent
states, as has previously been demonstrated in the case of
single Rydberg atoms in a microwave cavity [13]. In our
system, we consider an initial state which is the direct
product of a coherent spin state polarized along −ẑ and a
coherent state of the cavity field, jψ0i ¼ jð−N=2Þzi ⊗ jαi,
where Ŝzjð−N=2Þzi ¼ ð−N=2Þjð−N=2Þzi and âjαi ¼ αjαi.

Time evolution of this initial state under Eq. (1) generates
the superposition

jψAL
cat i ¼

XN=2

m¼−N=2

cmjmxi ⊗ jαe−iωmti; ð2Þ

where ωm ¼ χm, cm are the expansion coefficients of the
state jð−N=2Þzi in the basis Ŝxjmxi ¼ mxjmxi, and the
superscript AL emphasizes that the state is a generalized cat
state of both the atoms and light. Generalized cat states are
known to be an excellent resource for quantum metrology
due to their fine structure in phase space [5,36], inversely
proportional to the characteristic separation of the coherent
amplitudes ∼1=jαj, which makes a perturbed state rapidly
orthogonal to the initial cat. This is illustrated in Fig. 1(b),
where we plot the Wigner function of the equivalent
generalized cat state associated with just the bosonic degree
of freedom, jϕcavi ∝

PN=2
m¼−N=2 cmjαe−iωmti. The Wigner

function displays increasing detail as the superposed
coherent states jαe−iωmti disperse in time.
Quantitatively, the metrological utility of the state jψAL

cat i
to small displacements β≡ jβjeiθ is characterized by the
quantum Fisher information (QFI) F θ

Q ¼ 4hðΔX̂θþπ=2Þ2i.
Here, X̂θ ¼ âe−iθ þ â†eiθ is a bosonic quadrature operator
which generates the displacement and hðΔX̂θÞ2i≡ hX̂2

θi −
hX̂θi2 its variance. The QFI is related to the sensitivity δβ
by the quantum Cramer-Rao bound [37] ðδβÞ2 ≥ 1=F θ

Q.

For short times, t ≪ 1=ðjχj ffiffiffiffi
N

p Þ, the QFI is maximal for
displacements parallel to the initial coherently displaced
state α, i.e., θ ¼ 0, and is given by F 0

Q ≈ 4ð1þ Nχ2jαj2t2Þ
or, equivalently, ðδβÞ2 ≥ 1=½4ð1þ Nχ2jαj2t2Þ�. For com-
parison, in this context the SQL is defined as the sensitivity
achievable with the original coherent state jαi, ðδβÞ2 ¼ 1=4.
A key aspect of the metrological gain provided by a
generalized cat state is the characteristic growth rate of
F 0

Q, which is both collectively enhanced ∝
ffiffiffiffi
N

p
and

increases with the coherent amplitude ∝ jαj. At longer times
χt≳ 1=

ffiffiffiffi
N

p
, the atomic fluctuations will superpose the

bosonic coherent state completely about a circle of radius
jαj in phase space [Fig. 2(a)]. This state is sensitive to
perturbations along any direction with F θ

Q ≈ 4þ 8jαj2.
It is useful to contrast the sensitivity achievable when

measuring displacements as opposed to, e.g., phase shifts
ϕ, which are also commonly encountered in optical metrol-
ogy. For the latter, the SQL scales as ðδϕÞ2 ∝ 1=n̄ for an
average of n̄ uncorrelated particles, while the HL leads to an
improved scaling of ∝ 1=n̄2 [2–7]. In contrast, the SQL for
displacements (quoted above) is independent of n̄, while the
HL is ∝ 1=n̄. The different scaling can be reconciled using
n̄ ¼ jαj2 and the relation ðδβÞ2 ≡ ðjαjδϕÞ2 [36].
Protocol.—While the QFI bounds the optimal sensitivity

achievable with a given quantum state, in practice the

(a)

(b)

FIG. 1. (a) Proposed cavity-QED setup. N atoms are trapped in
a standing-wave optical lattice. The optical transition of each
atom forms a pseudospin 1=2 which is coupled to the field of the
resonant optical cavity [Eq. (1)]. Photon leakage from the cavity
at rate κ is the dominant decoherence mechanism. (b) Wigner
function of equivalent cavity field generated by dispersive
interaction, jϕcavi ∝

PN=2
m¼−N=2 cmjαe−iωmti, where cm are

adopted from a coherent spin state [see Eq. (2)] and
ωm ¼ χm. Increasingly fine structure emerges in the phase-space
distribution as time proceeds. We choose N ¼ 10 and α ¼ 4 for
illustration.
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sensitivity is limited by the measurements which can be
implemented in the experimental platform [38]. Specifically,
the phase-space structure of cat states like jψAL

cat i [Fig. 1(b)],
which makes them sensitive to displacements, also requires
complex measurements necessitating single-particle resolu-
tion [39] or the ability to perform state tomography [5,36].
Predictably, then, measurements of simple cavity observ-
ables like the quadrature X̂ ¼ âþ â† are not useful to sense
the small perturbation of jψAL

cat i. Recently, it has been
demonstrated that a powerful solution is to use a time-
reversal protocol [3,12,13,17,40–47], wherein the initial

entangling dynamics are reversed after the perturbation. If
the initial prepared state is Gaussian, such as jð−N=2Þzi ⊗
jαi used here, then even simple observables can typically be
used to achieve almost ideal sensitivity to the perturbation.
Moreover, reversal protocols can have other favorable
properties including robustness to experimental detection
noise [43,48–50].
Our proposed interferometric protocol consists of the

following steps (see Fig. 2): (1) prepare the cavity in a
coherent state of real amplitude α and with pseudospin
pointing along −ẑ, (2) evolve with Ĥ for time τ, (3) coher-
ently displace the cavity by β, (4) evolve with −Ĥ for time
τ, and (5) measure an observable M̂ (at final time 2τ).
We will demonstrate that measuring spin observables,
e.g., M̂ ¼ Ŝy, is sufficient to nearly saturate the quantum
Cramer-Rao bound. For completeness, other measurements
such as the occupation or quadratures of the cavity field are
not sensitive observables.
Physical intuition for the protocol and the choice of

M̂ ¼ Ŝy can be gained from a semiclassical picture (see
Fig. 2). The first evolution can be interpreted as a rotation
of the collective spin about x̂ by an angle ϕ1 ∼ χjαj2τ,
driven by the large coherent field in the cavity. After the
perturbation of the cavity field, the reverse evolution
counterrotates the spin by ϕ2 ∼ −χjαe−iχSxτ þ βj2τ, where
the phase of the α term accounts for the evolution of the
bosonic mode in the first stage and Sx is a semiclassical
fluctuation of characteristic scale ∼

ffiffiffiffi
N

p
due to quantum

projection noise. Coarsely, this second rotation overcom-
pensates for the first, leading to a small net rotation,
ϕtot ¼ ϕ1 þ ϕ2 ∼ −2χαβτ cosðχSxτÞ, of the collective spin.
The β dependence is amplified by the coherent amplitude α.
Finally, measuring M̂ ¼ Ŝy we find an attainable sensitivity,

ðδβÞ2 ¼ hðΔM̂Þ2i
j∂βhM̂ij2 ≈

1

4Nχ2τ2α2
; ð3Þ

where we assume β → 0 and τ ≲ ðχ ffiffiffiffi
N

p Þ−1. The divergence
at early times is a consequence of the spin projection noise
hðΔŜyÞ2i ∝ N=4: The atom-cavity interaction must be suf-
ficiently long so that the rotation of the collective spin is
resolvable in Ŝy above the spin projection noise, δSy ≡
ðN=2Þϕtot ¼ χαδβτ ≥

ffiffiffiffiffiffiffiffiffi
N=4

p
. In fact, this requirement can

be used to qualitatively derive Eq. (3).
Engineered atom-light interaction.—The dispersive

interaction, Eq. (1), can be engineered via two approaches,
both starting from the underlying Tavis-Cummings model,
which describes the uniform coupling of a single bosonic
mode to a collection of N two-level atoms:

ĤTC ¼ gðâ†Ŝ− þ âŜþÞ − Δcâ†â: ð4Þ
Here, 2g is the single-photon Rabi frequency and Δc is
the detuning of the cavity mode from the atomic transition.

(b)

(a)

FIG. 2. (a) Preparation of generalized cat state jψAL
cat i and

interferometric protocol. (i) The cavity is injected with a coherent
field α and the collective spin is fully polarized along −ẑ (blue
circles). (ii) Fluctuations in the spin projection combined with the
dispersive interaction drive a rotation of the initial bosonic
coherent state into a superposition at angles θm ∼ χmxτ.
Conversely, the large cavity occupation rotates the collective
Bloch vector by ϕ1 ¼ ∼χjαj2τ about x̂. (iii) The cavity field is
coherently displaced by β (red circles). The spin degree of
freedom is unaffected. (iv) Flipping the sign of the dispersive
interaction unwinds the initial rotations. If β ≠ 0, the final cavity
state (red circles) does not return to the original coherent state.
Similarly, the collective spin rotates back under the evolution by
ϕ2 ∼ −χjαe−iχSxτ þ βjτ about x̂, leading to an overall residual
rotation ϕtot ¼ ϕ1 þ ϕ2 ∼ −2χαβτ cosðχSxτÞ. (b) In the absence
of a displacement the time reversal revives the initial state (blue).
However, perturbation of the cavity field destroys this revival,
reflected in hŜyi ≠ 0 for β ≠ 0 (red). The dependence of the final
hŜyi on β allows the parameter β to be inferred.
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We highlight that this Hamiltonian could also be realized
by driving the sideband transition in a trapped ion array
with uniform coupling to a single motional mode [25,51].
The most obvious method to engineer the dispersive

interaction is to follow the approach used in microwave
cavity platforms and work in the limit of a large detuning,
jΔcj ≫ jgj ffiffiffiffi

N
p

. However, such a large detuning leads to an
unfavorable scaling of the coherent interaction ∝ χ

ffiffiffiffi
N

p
relative to typical cavity loss rates.
Here,we instead outline a protocol to engineer a dispersive

coupling by tuning the cavity to resonance Δc ¼ 0 [13] and
injecting a large coherent state hâ†âi ¼ jαj2 ≫ 1. While to
leading order this generates rapid Rabi flopping on the
atomic transition, we show that the next-order correction is a
dispersive atom-light interaction. To elucidate this, we adopt
a number-phase representation â ¼

ffiffiffiffiffiffiffiffi
â†â

p
eiϕ̂ [52], and argue

that the large occupation of the initial coherent state implies
that the phase fluctuations δϕ̂ ∼ 1=jαj are small with respect
to number fluctuations δn̂ ¼ â†â − jαj2 ∼ jαj. Moreover, we
assume that these phase fluctuations remain small throughout
the protocol, which is satisfied for the situations we consider
here. Continuing, we approximate â →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαj2 þ δn̂

p
→ jαjþ

δn̂=ð2jαjÞ, keeping terms of first order in δn̂.Manipulation of
ĤTC under this approximation yields

HR ¼ gjαjŜx þ
g
jαj Ŝxâ

†â: ð5Þ

The first term and mean-field contribution ∝ jαj2 of the
second term describe the expected Rabi flopping. The
dispersive coupling, equivalent to Eq. (5) with χ ¼ g=jαj,
is a result of our more detailed treatment incorporating
quantum fluctuations. We expect this expansion to be valid
when δn̂ ≪ hâ†âi. More concretely, as the atom-light
interaction in ĤTC can facilitate an exchange of up to N
excitations between the bosonic and spin degrees of freedom,
we requireN ≪ jαj2. Lastly, the sign of the Hamiltonian ĤR

can be reversedby a global rotation about ẑ, so that Ŝx → −Ŝx
and Ŝy → −Ŝy.
Effects of dissipation.—Of concern to any realistic

quantum sensor is a complete characterization of sources
of technical noise and decoherence, and their effects on the
sensor’s performance. For our system, intrinsic sources of
decoherence are photon loss from the cavity at rate κ
and single-particle spontaneous emission of the atoms at
rate γ. The former mechanism is important in optical
cavities where typically g ≪ κ. This contrasts with micro-
wave cavities, which can operate in a strong coupling limit
with a single qubit [22,23]. In the following, we demon-
strate that decoherence in an optical cavity can still be
overcome by harnessing the collective enhancement of an
N atom ensemble.
Decoherence due to leakage of photons, at a rate κ ∼

0.1–1 MHz in state-of-the-art experiments [11,53–55], can
be estimated from a toy model based on the archetypal

bosonic cat state jψ cati ¼ ðjα0i þ j − α0iÞ=
ffiffiffi
2

p
. Photon loss

destroys the superposition (off-diagonal coherences) expo-
nentially with the separation jα0j of the coherences,
e−2κjα0j2t. This characteristic decay is similarly displayed
by the QFI with respect to small displacements, FB

Q ≈ 4þ
16jα0j2e−κte−4κjα0j2t [56].
While the exponential decay of this toy model indicates

that the generalized atom-light cat state is fragile, we find
there is a relatively large region of parameter space in which
the effects of dissipation, though negative, are not overtly
detrimental to our protocol. Specifically, as entanglement
and coherences are generated (via Hamiltonian evolution)
simultaneously with photon loss, for an initially unentangled
product state we expect that there is an optimum time at
which F 0

Q is maximized. As an estimate we simplify Eq. (2)
by considering the relevant coherent state amplitudes to be
those that are entangled with spin components jmxj <

ffiffiffiffi
N

p
,

with a dynamically evolving cat separation α0 ≈ χ
ffiffiffiffi
N

p
αt.

Plugging this into the QFI prediction of jψ cati, assuming
κt ≪ 1, and minimizing over t, we obtain

ðF 0
QÞopt−4∼

�
χ2α2N
κ2

�
1=3

; topt∼
�

1

κχ2Nα2

�
1=3

: ð6Þ

Even if χ ≪ κ, as is typical in optical systems, Eq. (6)
indicates that χjαj ffiffiffiffi

N
p

> κ is sufficient to obtain a mean-
ingful QFI. This estimated scaling is borne out in the
sensitivity achievable with collective spin measurements:
For κτ ≪ 1, the sensitivity is [56]

ðδβÞ2κ ≈
1þ 2

3
κð ffiffiffiffi

N
p

χjαjτÞ2τ
4Nχ2jαj2τ2 ¼ 1

4Nχ2jαj2τ2þ
κτ

6
; ð7Þ

which has the optimum

ðδβÞ2κ;opt¼
1

4

�
3κ2

χ2Nα2

�
1=3

; τopt ¼
�

3

κχ2Nα2

�
1=3

: ð8Þ

This shows identical scaling to the quantum Cramer-
Rao bound 1=ðF 0

QÞopt. For our scheme χ ¼ g=jαj, so the
α factors cancel but N-fold enhancement remains,
ðδβÞ2κ;opt ¼ ð1=4Þ½3κ2=ðg2NÞ�1=3. This grants some freedom
to tune α to guarantee the validity of Eq. (5).
For state-of-the-art experiments using long-lived optical

transitions γ ≪ κ, and spontaneous emission leads pre-
dominantly to a single-particle decay of spin observables
on timescales 1=γ [56]. Given that τopt ≪ 1=γ, we can
neglect spontaneous emission in our analysis.
Experimental realization.—For concreteness, we present

an example calculation for the optical cavity described in
Refs. [53,58], where a single cavity mode is resonantly
coupled to an ensemble of N atoms trapped in a standing-
wave optical lattice oriented along the cavity axis.
We assume uniform coupling of the atoms to the cavity
mode, which can be realized via site-selective loading in
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the spatial lattice or using a ring cavity. Relevant exper-
imental parameters are N ∼ 105–106 atoms, α ¼ 100

ffiffiffiffi
N

p
,

and g=ð2πÞ ¼ 11 kHz for the 1S0 → 3P1 transition in 88Sr
[53,58]. Preparation of the initial spin state jð−N=2Þzi is via
optical pumping to the 1S0 ground state, while the coherent
state jαi is injected via a laser. The spin projection Ŝy
is mapped into atomic inversion Ŝz by global rotations
and measured by fluorescence [53]. In Fig. 3(a) we show
the metrological gain over the SQL for κ=ð2πÞ ¼
ð0; 15; 150Þ kHz. We predict improved sensitivity of at
least 10 dB beyond the SQL for κ=ð2πÞ ¼ 150 kHz and
N ¼ 5 × 105.
Conclusion.—We have demonstrated that atom-light

interactions in an optical cavity can be utilized to generate
nonclassical states for quantum metrology in the optical
domain. While the examples presented in this work focused
on optical cavities, our methods can be readily applied
to other systems including trapped ions [25], microwave
cavities [26], circuit QED [27,28], and hybrid quantum
systems [29,30], with immediate applications to the sensing
of weak forces [17,31].
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