
 

Extended Coherently Delocalized States in a Frozen Rydberg Gas

G. Abumwis , Matthew T. Eiles , and Alexander Eisfeld *

Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden, Germany

(Received 23 August 2019; accepted 13 April 2020; published 12 May 2020)

The long-range dipole-dipole interaction can create delocalized states due to the exchange of excitation
between Rydberg atoms. We show that even in a random gas many of the single-exciton eigenstates are
surprisingly delocalized, composed of roughly one quarter of the participating atoms. We identify two
different types of eigenstates: one which stems from strongly-interacting clusters, resulting in localized
states, and one which extends over large delocalized networks of atoms. These two types of states can be
excited and distinguished by appropriately tuned microwave pulses, and their relative contributions can be
modified by the Rydberg blockade and the choice of microwave parameters.
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Assemblies of cold Rydberg atoms are ideally suited to
investigate interactions in many-particle systems. They
possess many readily tunable properties and can, in many
circumstances, be treated with essential state Hamiltonians,
easing theoretical interpretation [1–6]. Although in recent
years several groups have successfully created well-defined
and reproducible structures of Rydberg atoms [7–10], the
most common experimental scenario is a frozen Rydberg
gas [11,12]. In such an environment, the Rydberg atoms are
distributed randomly and are immobile over typical exper-
imental timescales due to the ultracold temperature [13].
A particularly clear example of collective states of a

random gas with N Rydberg atoms is given by the
following scenario: we consider two Rydberg states per
atom, denoted ↑≡ νs and ↓≡ νp, with energies ϵ↑ and ϵ↓.
Here, ν is the principal quantum number while s and p
indicate the orbital angular momentum. We focus on the
single-exciton sector of the full Hamiltonian, which is
spanned by the degenerate states jni ¼ j↓↓;…;↑;…;↓i
which have energy ϵn ¼ ϵðnÞ↑ þP

j≠n ϵ
ðjÞ
↓ . This notation

implies a labeling scheme for the atoms where the sole ↑
excitation lies at atom n. Because of resonant dipole-dipole
interactions [14] the states jni are not energy eigenstates,
but the eigenstates instead have the form

jψli ¼
X

n

cðlÞn jni: ð1Þ

The coefficients cðlÞn determine the extent to which jψli is
coherently delocalized. Delocalization can be a challenging

concept to quantify since it is a property of the wave
function itself, and not a simple observable. Several
complementary measures can be used to extract the most
relevant information [15,16]; two standard ones are the
“inverse participation ratio” [15] and the coherence [17].
We use the coherence,

Cl ¼
X

n

X

n≠m
jðcðlÞn Þ�cðlÞm j: ð2Þ

It has an intuitive interpretation. As a rule of thumb, its
value roughly corresponds to the number of atoms coher-
ently sharing the ↑ excitation. C ¼ 1 corresponds exactly to
a dimer state, while C ¼ N − 1 for an equally distributed
state (cn ¼ 1=

ffiffiffiffi
N

p
). We provide further examples in the

Supplemental Material [18].
It is well known that dimer states (having cðlÞn ≠ 0 at just

two atoms) form because in a random Rydberg gas
there exist pairs of atoms with interparticle separations
far smaller than the mean nearest-neighbor distance.
Figure 1(a) shows one of these dimers in, for pictorial
clarity, a two-dimensional gas. The two atoms in this dimer
interact strongly and decouple energetically from the rest of
the gas, and exhibit a range of fascinating behavior and
dynamics [9,19–22]. There are numerous studies which
have investigated the rich physics of the full eigenenergy
spectrum [23–26]. What is far less understood is the extent
to which coherently delocalized eigenstates can develop
given the random nature of the gas. Because of the
clustering properties of a random gas and the energetic
decoupling of strongly interacting clusters of atoms
(dimers, trimers, etc.), one could surmise that the gas
fragments into a hierarchy of clusters with corresponding
eigenstates that remain small relative to the total gas size. In
contrast to this hypothesis, the state in Fig. 1(b) exhibits
remarkably large delocalization over many atoms.
Figure 1(d) shows that this delocalization is not unique
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to this state. Delocalization is quantified by the coherence C
[defined in Eq. (2)]. Clearly, states involving around one
third of the atoms are very common.
Before we investigate the properties of these states

further, we first provide more details about the physical
system and our theoretical modeling. A possible way to
investigate the single-exciton eigenstates jψli is via micro-
wave transitions from the state G ¼ j↓↓;…;↓i with all
atoms initially in the ↓ state. The dimension of G
determines N, the number of Rydberg atoms involved.
In a typical scenario, roughly 1% of the ground state atoms
in a gas can be promoted to the ↓ Rydberg state, and so the
Rydberg density n can easily range from 107–1012 cm−3

[6]. For ultracold gas dimensions of V ∼ ð200 μmÞ3,
this process results in N ≈ 1000 Rydberg atoms. In our
simulations we place N Rydberg atoms within a cube
following a uniform distribution of positions R⃗n. Although
realistic atomic clouds do not have truly uniformly
distributed particles, we show in the Supplemental
Material [18] that, for example, particles distributed accord-
ing to a Gaussian distribution have qualitatively similar
coherence properties.
In general, each state jni possesses degenerate magnetic

quantum number sublevels and the interaction has a
tensorial form [23,27,28]. We avoid this complication by
applying a ∼10 G magnetic field to isolate the ml ¼ 0
subspace via the Zeeman shift of 1.4 MHz=G, as is often
done in experiments, see, e.g., Ref. [29]. Then, the relevant
Hamiltonian is

H¼
XN

n¼1

ϵnjnihnjþ
X

n

X

m≠n
VnmðR⃗n;R⃗mÞjnihmj; ð3Þ

with

VnmðR⃗n; R⃗mÞ ¼
1

3

μ2

jR⃗n − R⃗mj3
ð1 − 3cos2θÞ; ð4Þ

where θ is the relative angle between R⃗n − R⃗m and B⃗.
The transition dipole between ↑ and ↓ states is denoted by
μ. Equation (4) is modified when retardation effects are
relevant, but these can be neglected for our system size of a
few millimeters and transition frequencies ωps ¼ ϵp − ϵs of
several GHz.
We now examine the relevant properties of the eigen-

states of the Hamiltonian [Eq. (3)]. These eigenstates are
obtained by numerically diagonalizing the Hamiltonian for
a large number of atomic arrangements [18]. As seen in
Fig. 1(c), there are no states with coherence C smaller than
one, implying that it is impossible to excite individual
atoms in the gas. Following the sudden onset at C ¼ 1, i.e.,
the appearance of dimers, the coherence probability rapidly
decreases at a rate nearly independent of N before leveling
off and continuing at a finite value into a very long tail
[Fig. 1(d)]. The tail extends to coherence values around
one-third of N, and even increases to form a broad peak at
large C.
To gain more insight into this coherence distribution we

investigate the correlation between eigenenergy and delo-
calization. Figure 2 displays the probability to find a state
with a given eigenenergy and coherence. This distribution
clearly reveals that the low coherence peak in Fig. 1 is
associated with large energy shifts; the energy tails (not
shown at this scale) are almost exclusively dimer states with
C ¼ 1. Since the probability to find small clusters of atoms
is independent of N, so is the coherence probability over
this range, as confirmed by Fig. 1(c). In contrast, states with
high coherence are strongly associated with states having
approximately the mean interaction energy. This suggests
that these large decoherences are provided by networks of
mutually interacting atoms.
To better understand what aspects of the interaction Vnm

are responsible for the appearance of the delocalized states
and their distribution, we have varied the “long-range
character” and the angular form of the interaction by
choosing different power law exponentsR−α and neglecting
the angular dependence [30]. We always find many
delocalized states. The overall coherence decreases as
the interaction becomes more short ranged. We observe
also that increased anisotropy in the interaction increases
the amount of delocalization. The presence of the anistropy
complicates a simple one-to-one correspondence between
small interparticle distances and large interactions, and
could be a reason why extended networks featuring large

FIG. 1. (a),(b) Two different eigenstates of the same 2D
realization. The circle size and color represent the ↑ amplitude
at each site. The magnetic field axis (blue arrow) and magic angle
of the dipole-dipole interaction (black arrows) are discussed in

the text. For each state cM ¼ maxn c
ðlÞ
n . (c),(d) The probability to

find states with coherence C in a 3D random Rydberg gas with
varying number of Rydberg atoms N. Panel (c) highlights the low
coherence and (d) the high coherence regions. We averaged over
104 random realizations. Note the different scales of the y axes.
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coherence are more probable for anisotropic interactions.
This is because close pairs at the magic angle where the
interaction vanishes, θ ≈ 54°, do not interact. They there-
fore become part of extended states rather than dimers; this
is manifested in the angular correlations along the rays
visible in Fig. 1(b).
To study the delocalized states further, we take advan-

tage of an inherent mechanism to suppress the population
of dimers in a random Rydberg gas: the Rydberg blockade
[31–34]. This has a profound impact on the distribution of
atomic positions making up the initial state jGi because two
atoms closer than the blockade radius, RB ∝ ðν11=ΩÞ1=6,
cannot be simultaneously excited [35]. In the laboratory, by
varying ν or the laser bandwidth Ω one can tune the
blockade radius over a wide range of values. To crudely
incorporate the Rydberg blockade we eliminate, from the
initial distribution of Rydberg atom positions, one atom
from each pair having a mutual separation less than one RB.
The Rydberg blockade allows us to relate localization and
coherence to the interparticle separations in the gas [24],
since it prevents the formation of small clusters of atoms,
eliminating eigenstates with small coherence like the one
shown in Fig. 1(a). Indeed, Fig. 3 reveals a sharp loss in the
peak at low coherence. As the blockade radius increases to
the Wigner-Seitz radius the low coherence peak is totally
erased, compensated by an increase in the number of highly
delocalized states.
After compiling these results together, an explanation of

the formation of delocalized states emerges. It is clear that

strongly localized states are associated with very strong
interactions, and hence with small clusters at favorable
orientations for the dipole-dipole anisotropy. These clusters
decouple from and cease to interact with the rest of the
system, leaving behind a residual distribution of atoms
which is no longer truly uniformly distributed since it has
very few remaining small clusters (the Rydberg blockade
exaggerates this by even more strongly suppressing cluster
formation in the initial distribution). The remaining atoms
left to participate are still randomly arranged, but their
spacing is more regular than in a uniform distribution. The
excitation therefore extends over very many atoms. We note
that, as most previous effort has been devoted to the
eigenvalue statistics of such random systems, rather than
their eigenstate properties, this property has to the best of
our knowledge only scarcely been noticed [36–38].
Of course, these coherent delocalized states are only

physically relevant if they are robust to noise or disorder. If
perturbations on the order of the smallest interactions in the
gas could destroy these states, then the delocalization is in
some sense trivial and, more crucially, could never be
realized experimentally. A sophisticated study of the effects
of disorder and decoherence requires a full inclusion of
these effects into the evolution of the density matrix, which
is beyond the scope of this Letter. Instead, as a crude check
of the effects of some of these perturbations, we include
diagonal disorder by randomly varying ϵn according to a
uniform distribution, or remove small off-diagonal matrix
elements under a cutoff threshold (see Ref. [30] for more
details). We express the width of the distribution (i.e., the
strength of the disorder) and this cutoff threshold in units of
V0 ¼ ð4π=9Þμ2n, the interaction strength at the Wigner-
Seitz radius. Both effects tend to suppress the long-range
coherence, but we find that this suppression is not strong in
this system: the localization length is only reduced by a

FIG. 3. Coherence probability for several Rydberg blockade
radii RB given in units of the Wigner-Seitz radius a. The two
panels highlight different regions and use different y scales. For
RB ¼ 0 the number of Rydberg atoms is N ¼ 1000; as a result of
the blockade this reduces to 992 for RB ¼ 0.25, 943 for RB ¼ 0.5,
834 for RB ¼ 0.75, and 686 for RB ¼ 1. Here 5 × 105 realizations
were used. The resonant and nonresonant interactions scale rather
differently with ν and density n: VR ∼ ν4n, while VNR ∼ ν4n2. A
scenario with dipole-dipole interactions on the order of V0 ≈
10 MHz and a large blockade radius RB ¼ 1a can be realized for
example with ν ∼ 100 and density ∼107 cm−3.

FIG. 2. The distribution (probability density function) of states
having coherence C and eigenenergy E forN ¼ 1000. The zero of
energy is the energy ϵn of noninteracting atoms. As the unit of
energy we use V0 ≡ ð4π=9Þμ2n, which comes from evaluating
Eq. (4) for θ ¼ 0 at the Wigner-Seitz radius a ¼ ð3=4πnÞ1=3.
It corresponds to the typical energy scale of a Rydberg gas
with density n. The marginal distributions are plotted on
the top (corresponds to the density of states) and side
[cf. Figs. 1(c) and 1(d)].
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factor of around one-third even when the disorder strength
is on the order of V0 or when interactions up to five percent
of V0 are removed—even though, in this latter case, around
99% of the matrix elements are set to zero. This shows that
these states are robust, and furthermore indicates that the
interactions between various atoms contained in the delo-
calized states are still fairly large, which helps to preserve
the delocalization under perturbation.
One practical issue is how to access these delocalized

states. Note that the random nature of the gas implies
that we do not know the arrangement of the atoms,
and equivalently the exact eigenenergies of the delocalized
states. Additionally, we found that most of the delocalized
states have only small oscillator strengths [30].
Nevertheless, short microwave pulses allow for selective
excitation of states with large coherence. This is demon-
strated in Fig. 4, where we show the probability to find
states with coherence C in a gas of 1000 atoms. Essentially,
only states with coherence larger than 200 are populated.
To obtain this curve, we have solved the time-dependent
Schrödinger equation taking the initial state jGi, the single-
exciton states jni, and the coupling to the microwave
explicitly into account. Although we have chosen param-
eters for which multiexciton states can be ignored, the
probability to have excited states remains nevertheless

sufficiently large—about 1%—to be probed in experiment.
For smaller numbers of N (up to N ¼ 200) we have
performed full calculations taking the two-exciton states
into account. From these results we confirmed that our
choice of parameters ensures negligible population of the
two-exciton states. We note that it is also interesting to
excite and investigate the multiexciton states, but this goes
beyond the present work. The basic reason why this simple
excitation scheme works can be understood by considering
the coherence distribution for energies around E ¼ 0,
corresponding to the transition energy ωsp, in Fig. 2.
It is evident that the states at this energy have only large
coherences (see inset of Fig. 4). By choosing a microwave
pulse that is weak enough to only couple to states with
E ≈ 0 and long enough such that the spectral width is also
small, only these states are populated. We note that for each
single shot (i.e., realization of the gas and microwave pulse)
one will typically be in a coherent superposition of a few
delocalized eigenstates.
In conclusion, we have undertaken an extensive numeri-

cal study of the properties of the collective eigenstates of an
excitation in a random medium with long-range inter-
actions. We stress that our observations are generic to a
variety of physical situations with long-range interactions
between randomly placed particles, although the random
Rydberg gas emphasized here, having naturally long-range
interactions with rich angular structure, random statistics,
and the mechanism of Rydberg blockade for eliminating
localized states, is an ideal physical realization. As dem-
onstrated by Figs. 1 and 3, we find that the majority of
eigenstates in a random gas are highly delocalized, with
coherences extending upwards of one-third of the atoms.
There is also a clear asymmetry in this distribution with
respect to the mean eigenenergy which is barely visible in
the marginal distribution. We have studied 3D and 2D
arrangements with different power laws and different angle
dependencies in the interaction and found that a compli-
cated picture emerges [30]. This indicates a sensitive
dependence on dimension and anisotropy of the interaction
which deserves further detailed studies. We have shown
that a promising way to reach the delocalized eigenstates is
by using microwave pulses that are short compared to
typical Rydberg lifetimes and the timescales of dipole-
dipole induced motion. While for the strongly interacting
dimer states the interaction potential leads to quite fast
atomic motion [39] for the extended states we do not expect
fast motion, since the interaction is smaller than in the
dimer states and the induced forces are further reduced by
the delocalization [40]. An interesting perspective is to
study the resulting adiabatic and nonadiabatic dynamics of
such extended states [41].
The observation that there exist strongly delocalized

states with appreciable oscillator strength (of order unity)
may aid in the interpretation and understanding of the phase
modulation spectroscopy of very dilute gases interacting

FIG. 4. Probability to find states with coherence values C after
exciting a gas of N ¼ 1000 Rydberg atoms in the ↓ state with a
microwave pulse (no blockade). The following parameters are
used: we choose the 50s and 50p states of rubidium at a density
around 108 cm−3 so that the relevant interactions are on the order
of V0 ≈ 10 MHz. We use a rectangular microwave pulse with
duration tmw ¼ 500 ns, a carrier frequency resonant with the
transition frequency ωps, and an electric field strength of Fmw ≈
5 × 10−16 au. The curve shown in Fig. 4 stems from averaging
∼1000 realizations. The inset shows marginal coherence distri-
butions obtained from Fig. 2 where only energy intervals [−ΔE,
þΔE] around E ¼ 0, rather than the entire range as in Fig. 2, are
considered. Approximately 0.5N states lie in this energy interval
when ΔE ¼ 1; this fraction decreases to 0.32N for ΔE ¼ 0.5 and
0.084N for ΔE ¼ 0.1.
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through the resonant dipole potential, although in a totally
different energetic regime as these were not Rydberg atoms.
In such experiments unexpectedly large signals have been
observed [42] and, in the absence of a more compelling
explanation, attributed to many body effects [43,44]. The
delocalized states that we find here can greatly amplify
such signals. Although a full explanation requires a study
of the two or more exciton system, preliminary studies
indicate that the 2-exciton states have a coherence length
that scales as N2=4. The Rydberg parameter range explored
here allows one to perform similar experiments under a
more controlled setting to try to unravel this puzzle.
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