
 

First-Principles Calculation of Electroweak Box Diagrams from Lattice QCD

Xu Feng ,1,2,3,4,* Mikhail Gorchtein,5,6,7 Lu-Chang Jin ,8,9,† Peng-Xiang Ma ,1 and Chien-Yeah Seng 10

1School of Physics, Peking University, Beijing 100871, China
2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3Center for High Energy Physics, Peking University, Beijing 100871, China

4State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
5Helmholtz Institute Mainz, Mainz 55128, Germany

6GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 55128, Germany
7Johannes Gutenberg University, Mainz 55128, Germany

8Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
9RIKEN-BNL Research Center, Brookhaven National Laboratory, Building 510, Upton, New York 11973, USA

10Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,
Universität Bonn, 53115 Bonn, Germany

(Received 25 March 2020; accepted 30 April 2020; published 15 May 2020)

We present the first realistic lattice QCD calculation of the γW-box diagrams relevant for beta decays.
The nonperturbative low-momentum integral of the γW loop is calculated using a lattice QCD simulation,
complemented by the perturbative QCD result at high momenta. Using the pion semileptonic decay as an
example, we demonstrate the feasibility of the method. By using domain wall fermions at the physical pion
mass with multiple lattice spacings and volumes, we obtain the axial γW-box correction to the semileptonic
pion decay,□VA

γW jπ ¼ 2.830ð11Þstatð26Þsyst × 10−3, with the total uncertainty controlled at the level of ∼1%.

This study sheds light on the first-principles computation of the γW-box correction to the neutron decay,
which plays a decisive role in the determination of jVudj.
DOI: 10.1103/PhysRevLett.124.192002

Introduction.—The precise determination of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements,
which are fundamental parameters of the standard model,
is one of the central themes in modern particle physics. In
the CKM matrix, Vud is the most accurately determined
element from the study of superallowed 0þ → 0þ nuclear
beta decays [1] which are pure vector transitions at tree
level and are theoretically clean due to the protection of the
conserved vector current. Going beyond tree level, the
electroweak radiative corrections involving the axial-vector
current become important and ultimately dominate the
theoretical uncertainties.
Among various electroweak radiative corrections, the

axial γW-boson box contribution □
VA
γW contains a signifi-

cant sensitivity to low-energy hadronic effects, and is a
dominant source of the total theoretical uncertainty [2]. The
recent dispersive analysis [3,4] reduced this uncertainty by
a factor of 2 comparing to the previous study by Marciano
and Sirlin [5], and the updated result of jVudj raised a 4
standard deviation tension with the first-row CKM unitarity

(barring possibly underestimated nuclear effects: see
Refs. [4,6]). The main difference between those works is
the use of inclusive neutrino and antineutrino scattering
data that Refs. [3,4] used to estimate the contribution of
the intermediate momenta inside the γW loop integral,
0.1 GeV2 ≲Q2 ≲ 1 GeV2, prone to nonperturbative had-
ronic effects. To further improve the determination of jVudj,
it requires either better-quality experimental input or the
direct, precise lattice QCD calculations of the γW-box
contribution.
Lattice QCD has played an important role in the

determination of the nonperturbative hadronic matrix
elements needed to constrain the CKM unitarity. Recent
lattice results are averaged and summarized by the FLAG
report 2019 [7]. With lattice QCD simulations having
reached an impressive level of precision for tree-level
parameters of the electroweak interaction, it becomes
timely and important to study higher-order electroweak
corrections. The examples of such lattice applications
include the QED corrections to hadron masses [8–15]
and leptonic decay rates [16–19] and a series of higher-
order electroweak effects, such as KL − KS mass difference
[20–22], ϵK [23], rare kaon decays [24–29], and double
beta decays [30–35]. As for the γW-box contribution,
which is a QED correction to semileptonic decays, it still
remains a new horizon for lattice QCD.
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It has been proposed to use the Feynman-Hellmann
theorem to calculate the γW-box contribution [36,37]. In
this work, we opt for a more straightforward way to
perform the lattice calculation. To demonstrate the fea-
sibility of the method, we carry out the exploratory study
for the case of the pion semileptonic decays. The calcu-
lation is performed at the physical pion mass with various
lattice spacings and volumes, which allows us to control the
systematic effects in the lattice results. Combining the
results from lattice QCD together with the perturbative
QCD, we obtain the axial γW-box correction to pion decay
amplitude with a relative ∼1% uncertainty.
The γW-box contribution.—In the theoretical analysis of

the superallowed nuclear beta decay rates, the dominant
uncertainty arises from the nucleus-independent electro-
weak radiative correction ΔV

R , which is universal for both
nuclear and free neutron beta decay [1]. Among various
contributions to ΔV

R , Sirlin established [2] that only the
axial γW-box contribution is sensitive to hadronic scales;
see Fig. 1 for the γW diagrams. The relevant hadronic
tensor TVA

μν is defined as

TVA
μν ¼ 1

2

Z
d4xeiqxhHfðpÞjT½Jemμ ðxÞJW;A

ν ð0Þ�jHiðpÞi; ð1Þ

for a semileptonic decay process Hi → Hfeν̄e. Above,
Hi=f are given by neutron and proton for the neutron beta
decay, and by π− and π0 for the pion semileptonic decay,
respectively. Furthermore, Jemμ ¼ 2

3
ūγμu − 1

3
d̄γμd − 1

3
s̄γμs

is the electromagnetic quark current, and JW;A
ν ¼ ūγνγ5d is

the axial part of the weak charged current.
The spin-independent part of TVA

μν has only one term,
TVA
μν ¼ iϵμναβqαpβT3 þ � � �, where T3 is a scalar function.

For the neutron beta decay, the spin-dependent contribu-
tions, denoted by the ellipses here, are absorbed into the
definition of the nucleon axial charge gA, which can be
measured directly from experiments. According to current
algebra [2], it is this spin-independent term that gives rise to
the hadron structure-dependent contribution and dominates
the uncertainty in the theoretical prediction. Using T3 as
input, the axial γW-box correction to the tree-level ampli-
tude is given as [3]

□
VA
γW jH ¼ 1

FHþ

αe
π

Z
∞

0

dQ2
m2

W

m2
W þQ2

×
Z ffiffiffiffiffi

Q2
p

−
ffiffiffiffiffi
Q2

p dQ0

π

ðQ2 −Q2
0Þ3=2

ðQ2Þ2 T3ðQ0; Q2Þ: ð2Þ

Here, Q2 ¼ −q2 > 0 is the spacelike four-momentum
square. The normalization factor FHþ arises from the local
matrix element hHfðp0ÞjJW;V

μ jHiðpÞi ¼ ðpþ p0ÞμFHþ, with
FHþ ¼ 1 for the neutron and

ffiffiffi
2

p
for the pion decay.

Methodology.—In the framework of lattice QCD, the
hadronic tensor TVA

μν in Euclidean spacetime is given by

TVA
μν ¼ 1

2

Z
dte−iQ0t

Z
d3xe−iQ⃗·x⃗HVA

μν ðt; x⃗Þ; ð3Þ

with HVA
μν ðt; x⃗Þ defined as

HVA
μν ðt; x⃗Þ≡ hHfðPÞjT½Jemμ ðt; x⃗ÞJW;A

ν ð0Þ�jHiðPÞi: ð4Þ

Here the Euclidean momenta P and Q are chosen as

P ¼ ðimH; 0⃗Þ; Q ¼ ðQ0; Q⃗Þ; ð5Þ

with mH the hadron mass.
By multiplying ϵμναβQαPβ to TVA

μν , we can extract the
function T3ðQ0; Q2Þ through

T3ðQ0; Q2Þ ¼ −
I

2m2
HjQ⃗j2 ; I ¼ ϵμναβQαPβTVA

μν : ð6Þ

Here I can be written in terms of HVA
μν as

I ¼ i
2
ϵμνα0QαmH

Z
dte−iQ0t

Z
d3x⃗e−iQ⃗·x⃗HVA

μν

¼ mH

2

Z
dte−iQ0t

Z
d3x⃗e−iQ⃗·x⃗ϵμνα0

∂HVA
μν

∂xα : ð7Þ

We can average over the spatial directions for Q⃗ and have

I ¼ mH

2

Z
dte−iQ0t

Z
d3x⃗j0ðjQ⃗jjx⃗jÞϵμνα0

∂HVA
μν

∂xα
¼ mH

2

Z
dte−iQ0t

Z
d3x⃗

jQ⃗j
jx⃗j j1ðjQ⃗jjx⃗jÞϵμνα0xαHVA

μν ; ð8Þ

where jnðxÞ are the spherical Bessel functions. A key
ingredient in this approach is that once the Lorentz scalar
function ϵμνα0xαHVA

μν is prepared, e.g., from a lattice QCD
calculation, one can determine T3ðQ0; Q2Þ directly.
Putting Eqs. (8) and (6) into Eq. (2) and changing the

variables as jQ⃗j ¼
ffiffiffiffiffiffi
Q2

p
cos θ and Q0 ¼

ffiffiffiffiffiffi
Q2

p
sin θ, we

obtain the master formula
FIG. 1. The γW-box diagrams for the semileptonic decay
process Hi → Hfeν̄e.
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□
VA
γW jH ¼ 3αe

2π

Z
dQ2

Q2

m2
W

m2
W þQ2

MHðQ2Þ ð9Þ

with

MHðQ2Þ ¼ −
1

6

1

FHþ

ffiffiffiffiffiffi
Q2

p
mH

Z
d4xωðt; x⃗Þϵμνα0xαHVA

μν ðt; x⃗Þ;

ωðt; x⃗Þ ¼
Z π

2

−π
2

cos3θdθ
π

j1ð
ffiffiffiffiffiffi
Q2

p
jx⃗jcosθÞ
jx⃗j cos ð

ffiffiffiffiffiffi
Q2

p
t sinθÞ:

ð10Þ

For small Q2, lattice QCD can determine the function
MHðQ2Þ with lattice discretization errors under control.
For large Q2, we utilize the operator product expansion

1

2

Z
d4xe−iQxT½Jemμ ðxÞJW;A

ν ð0Þ�

¼ i
2Q2

fCaðQ2ÞδμνQα − CbðQ2ÞδμαQν

−CcðQ2ÞδναQμgJW;A
α ð0Þ

þ 1

6Q2
CdðQ2ÞϵμναβQαJ

W;V
β ð0Þ þ � � � : ð11Þ

There are only four possible local operators at leading twist.
(For the pion decay, the hadronic matrix elements for the
first three operators vanish.) Multiplying ϵμναβQαPβ to the
relation (11) we obtain

T3ðQ0; Q2Þ ¼ CdðQ2Þ
3Q2

FHþ þ � � � ;

MHðQ2Þ ¼ CdðQ2Þ
12

þ � � � ; ð12Þ

where the ellipses remind us that the higher-twist contri-
butions are not included yet. The Wilson coefficient
CdðQ2Þ is calculated to four-loop accuracy [38,39]

CdðQ2Þ ¼
X
n

cnans ; as ¼
αsðQ2Þ

π
; ð13Þ

with coefficients cn given in Eq. (12) of Ref. [39]. Here αs
is the strong coupling constant.
We introduce a momentum-squared scale Q2

cut that
separates the two regimes, and split the integral in
Eq. (9) into two parts

□
VA
γW jH ¼ □

VA;≤
γW jH þ□

VA;>
γW jH

¼
�Z

Q2
cut

0

dQ2

Q2
þ
Z

∞

Q2
cut

dQ2

Q2

�
m2

W

m2
W þQ2

MHðQ2Þ:

ð14Þ

With Eq. (10) we use the lattice data to determine the
integral for Q2 ≤ Q2

cut, while with Eq. (12) we use
perturbation theory to determine the integral for Q2 > Q2

cut.
Lattice setup.—We use five lattice QCD gauge ensem-

bles at the physical pion mass, generated by RBC and
UKQCD Collaborations using 2þ 1-flavor domain wall
fermion [40]. The ensemble parameters are shown in
Table I. Here 48I and 64I use the Iwasaki gauge action
in the simulation (denoted as Iwasaki in this work) while
the other three ensembles use Iwasakiþ DSDR action
(denoted as DSDR). We calculate the correlation function
hϕπ0ðtfÞJemμ ðxÞJW;A

ν ðyÞϕ†
π−ðtiÞi with tf ¼ maxftx; tyg þ Δt

and ti ¼ minftx; tyg − Δt. We use the wall-source pion

interpolating operators ϕπ0 and ϕ†
π− , which have a good

overlap with the π ground state, and find the ground-state
saturation for Δt≳ 1 fm. In practice, the values of Δt are
chosen conservatively as shown in Table I. For each
ensemble we use the gauge configurations with sufficiently
long separation, i.e., each separated by at least 10 trajecto-
ries. The number of configurations used is listed in Table I.
There are four types of contractions for γW-box dia-

grams as shown in Fig. 2. We produce wall-source quark
propagators on all time slices. Using the techniques
described in Ref. [35] type (A) and (B) diagrams can be
calculated with high precision by performing the space-
time-translation average over L3 × T measurements. Under
the γ5 Hermitian conjugation of the Euclidean quark pro-
pagators, one can confirm that type (B) does not contribute
to the axial γW-box diagrams. Type (C) diagram is
calculated by treating one current as the source and the
other as the sink. We calculate point-source propagators at
Nr random spacetime locations. The values of Nr are
shown in Table I. These point-source propagators can be
placed at either electromagnetic current or weak current.
We thus average the type (C) correlation functions over 2Nr
measurements. This is similar with the treatment taken by
Ref. [41]. We neglect the disconnected contribution (D),
which vanishes in the flavor SU(3) limit.
Numerical results.—In practice, the integral in Eq. (10)

can be performed within a range of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ x⃗2

p
≤ R. Taking

TABLE I. Ensembles used in this work. For each ensemble we
list the pion mass mπ , the spatial and temporal extents, L and T,
the inverse of lattice spacing a−1, the number of configurations
used, Nconf , the number of point-source light-quark propagator
generated for each configuration Nr, and the time separation Δt,
used for the π ground-state saturation.

Ensemble mπ [MeV] L T a−1 [GeV] Nconf Nr Δt=a

24D 141.2(4) 24 64 1.015 46 1024 8
32D 141.4(3) 32 64 1.015 32 2048 8
32D-fine 143.0(3) 32 64 1.378 71 1024 10
48I 135.5(4) 48 96 1.730 28 1024 12
64I 135.3(2) 64 128 2.359 62 1024 18
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the ensemble 64I as an example, MπðQ2Þ as a function of
the integral range R is shown in Fig. 3. We find that for all
the momenta Q2 ∈ ½0; 4� GeV2, the integral is saturated at
large R. We choose the truncation range R0 ≃ 4 fm, which
is a conservative choice for all ensembles listed in Table I.
The contributions to the integral from

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ x⃗2

p
> R0 is

negligible, indicating that the finite-volume effects are well
under control in our calculation. We can further verify this
conclusion by a direct comparison using the 24D and
32D data.
The lattice results of MπðQ2Þ as a function of Q2 are

shown in Fig. 4 together with the perturbative results.
Ensemble 24D and 32D have the same pion mass and
lattice spacing but different volumes. The good agreement
between these two ensembles indicates that the finite-
volume effects are smaller than the statistical errors. At
Q2 ≳ 1 GeV2, the lattice discretization effects dominate the
uncertainties. In the left panel of Fig. 4 an obvious
discrepancy is observed at large Q2 for the lattice results
with different lattice spacings.

For the perturbation theory, the Wilson coefficient
CdðQ2Þ is determined using the RunDec package [42],
where αs is calculated to four-loop accuracy. At low Q2 the
results still contain large systematic uncertainties due to the
lack of higher-loop and higher-twist contributions. In Fig. 4
we show two curves from perturbation theory. One is
compiled using 4-flavor theory down to 1 GeV, while the
other decouples the charm quark at 1.6 GeV and uses 3-
flavor theory for ð1 GeVÞ2 ≤ Q2 ≤ ð1.6 GeVÞ2. The dis-
crepancy between the two curves suggests an O(14%)
systematic effect in the perturbative determination of
MHðQ2Þ at Q2 ≈ 1 GeV2.
Estimate of systematic effects.—For □

VA;≤
γW the largest

uncertainties arise from the lattice discretization effects.
Since Iwasaki and DSDR ensembles have different lattice
discretizations, we treat them separately. After the linear
extrapolation in a2, the Iwasaki and DSDR results at the
continuum limit are shown in the right panel of Fig. 4.
Using Q2

cut ¼ 2 GeV2 we obtain

□
VA;≤
γW jπ ¼

�
0.671ð11Þ × 10−3 for Iwasaki

0.647ð7Þ × 10−3 for DSDR
: ð15Þ

We take the Iwasaki result as the central value and estimate
the residual Oða4Þ lattice artifacts using the discrepancy
between Iwasaki and DSDR.
For□VA;>

γW the largest uncertainties arise from the higher-
loop and higher-twist truncation effects. We estimate the
former by comparing the 4-loop and 3-loop results from

(a) (b)

(c) (d)

FIG. 2. Four types of quark contractions for pion γW-box
diagrams.
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FIG. 3. For ensemble 64I, lattice results of MπðQ2Þ as a
function of the integral range R.
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FIG. 4. MπðQ2Þ as a function of Q2. In the left panel, the lattice
results for ensembles 64I, 48I, 32D-fine, 32D, and 24D are
represented by turquoise, indigo, dark green, red, and black
bands, respectively. Taking 64I and 24D as examples, the results
for type (A) diagram are also plotted. In the right panel, Iwasaki
and DSDR results at the continuum limit are shown by the gray
and brown bands. The orange curve shows the results from
perturbation theory by decoupling the charm quark at 1.6 GeV
while the magenta one is compiled using the 4-flavor perturbation
theory continuously down to 1 GeV.
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perturbation theory. For the latter, unfortunately the com-
plete information is not available. Considering the fact that
type (A) diagram, which has two currents located at
different quarks lines, only contains the higher-twist con-
tributions, we use it to estimate the size of higher twist. At
Q2

cut ¼ 2 GeV2 we have

□
VA;>
γW jπ ¼ 2.159ð6ÞHLð7ÞHT × 10−3; ð16Þ

where the central value is compiled using the 4-flavor
theory (see the magenta curve in the right panel of Fig. 4).
The first error indicates the higher-loop effects. The second
one stands for the higher-twist effects, which are compiled
from the integral of Q2 > Q2

cut using the type (A) data
as input.
Summary of results.—After combining the results of

□
VA;≤
γW from lattice QCD and □

VA;>
γW from perturbation

theory, we obtain the total contribution of □VA
γW

□
VA
γW jπ ¼ 2.830ð11Þstatð9ÞPTð24Það3ÞFV × 10−3

¼ 2.830ð11Þstatð26Þsyst × 10−3; ð17Þ

where the first uncertainty is statistical, and the remaining
errors account for perturbative truncation and higher-twist
effects, lattice discretization effects, and lattice finite-
volume effects by comparing the 24D and 32D results.
We add these systematic errors in quadrature to obtain the
final systematic error. For comparison, we also calculate
□

VA
γW jπ ¼ 2.816ð9Þstatð24ÞPTð18Það3ÞFV × 10−3 at Q2

cut ¼
1 GeV2 and □

VA
γW jπ ¼ 2.835ð12Þstatð5ÞPTð30Það3ÞFV ×

10−3 at Q2
cut ¼ 3 GeV2. Both results are consistent with

Eq. (17).
For the pion semileptonic decay, the PIBETA experiment

[43] has improved the measurement of the branching ratio
to 0.6%. The standard model prediction of the decay rate is
given by [2,43]

Γπl3 ¼
G2

FjVudj2m5
πjfπþð0Þj2

64π3
ð1þ δÞIπ; ð18Þ

with GF ¼ 1.1663787ð6Þ × 10−5 GeV−2 the Fermi’s con-
stant measured from the muon decay, mπ the charged pion
mass, fπþð0Þ ¼ 1 the tree-level semileptonic form factor
and Iπ ¼ 7.376ð1Þ × 10−8 a known kinematic factor.
Numerically, Γπl3 ¼ 0.3988ð23Þ s−1 after taking into
account the updated value of πþ → eþνðγÞ branching ratio
as an overall normalization [44]. The effects of radiative
corrections are contained in δ. The existing analysis
from chiral perturbation theory (ChPT) yields δ ¼
0.0334ð10ÞLECð3ÞHO [44–47] with an overall theoretical
uncertainty of Γπl3 at a level of 0.1%. Here the first error is
from the low energy constants and the second is the
uncertainty in determining the higher-order QED effects
[48]. Thus the experimental measurement dominates the

uncertainties and results in the determination of jVudj ¼
0.9739ð28Þexpð5Þth with a 0.3% uncertainty.
We now show how our calculation reduces the uncer-

tainty in δ. We adopt Sirlin’s parametrization [2] with slight
modifications:

δ¼ αe
2π

�
ḡþ3 ln

mZ

mp
þ ln

mZ

mW
þ ãg

�
þδQEDHO þ2□VA

γW: ð19Þ

By separating the axial γW-box part into □
VA
γW , the

remaining contributions are model independent and are
given as follows. (i) Sirlin’s function ḡ arises from a
structure-independent, UV-finite one-loop integral. It
accounts for the infrared contributions involving the vector
γW-box and the bremsstrahlung corrections. It contains
a 3 lnmp term that cancels the mp dependence in
3 lnðmZ=mpÞ. Here mp is the proton mass that appears
just as a matter of convention. Numerically, one has
ðαe=2πÞḡ ¼ 1.051 × 10−2 [2,49]. (ii) ãg represents the
OðαsÞ QCD correction to all one-loop diagrams except
for the axial γW box. The integral in ãg is dominated by the
high-energy scale Q2 ≃m2

W , where αs is small. As a
consequence ðαe=2πÞãg ≈ −9.6 × 10−5 is a small contri-

bution [2,50]. (iii) δQEDHO ¼ 0.0010ð3Þ summarizes the
leading-log higher-order QED effects which can be
accounted for through the running of αe. The uncertainty
assignment follows Ref. [48]. Although the detailed
uncertainties for ḡ and ãg are not given, by power counting
the intrinsic precision for the terms in the square brackets
(multiplied by αe=2π) is of the order GFm2

p ∼ 10−5.
Combining the □

VA
γW in Eq. (17), we now obtain

δ ¼ 0.0332ð1ÞγWð3ÞHO; ð20Þ

which corresponds to an almost complete removal of the
dominant LEC uncertainties in the ChPT expression, and a
reduction of the total uncertainty by a factor of 3.
Therefore, any theoretical improvement in the future will
unavoidably require a complete electroweak two-loop
analysis. Consequently, the jVudj determined from the pion
semileptonic decay now reads: jVudj ¼ 0.9740ð28Þexpð1Þth.
Conclusion.—In this work we perform the first realistic

lattice QCD calculation of the γW-box correction to the
pion semileptonic decay, □VA

γW jπ . The final result combines
the lattice data at low momentum and perturbative calcu-
lation at high momentum. We use multiple lattice spacings
and volumes at the physical pion mass to control the
continuum and infinite-volume limits and obtain □

VA
γW jπ

with a total error of ∼1%. As a result, the uncertainty of the
theoretical prediction for the pion semileptonic decay rates
is reduced by a factor of 3. This result does not impact the
first-row CKM unitarity due to the large experimental error,
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but a follow-up work [51] shows that the 4σ tension
persists.
The combined experimental measurement of 14 nuclear

superallowed beta decays [1] is 10 times more accurate than
the current pion semileptonic decay experiment. On the
other hand, the free neutron decay [52,53] leads to a 4.5
times better precision. In these two cases, the nonpertur-
bative, structure-dependent γW-box contribution plays a
decisive role. The technique presented in this work can be
straightforwardly generalized to a lattice calculation of the
nucleon γW-box corrections, which are universal for both
free and bound neutron decay. The latter is the key to a
precise determination of jVudj and a stringent test of CKM
unitarity.
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