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We present a first principles study of chiral plasma instabilities and the onset of chiral turbulence in QED
plasmas with strong gauge matter interaction (e*N = 64), far from equilibrium. By performing classical-
statistical lattice simulations of the microscopic theory, we show that the generation of strong helical magnetic
fields from a helicity imbalance in the fermion sector proceeds via three distinct phases. During the initial linear
instability regime the helicity imbalance of the fermion sector causes an exponential growth (damping) of
magnetic field modes with right- (left-) handed polarization, for which we extract the characteristic growth
(damping) rates. Secondary growth of unstable modes accelerates the helicity transfer from fermions to gauge
fields and ultimately leads to the emergence of a self-similar scaling regime characteristic of a decaying
turbulence, where magnetic helicity is efficiently transferred to macroscopic length scales. Within this turbulent
regime, the evolution of magnetic helicity spectrum can be described by an infrared power spectrum with
spectral exponent x = 10.2 + 0.5 and dynamical scaling exponents ¢ = 1.14 £+ 0.50 and f = 0.37 +0.13.
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Novel macroscopic phenomena related to the in- and out-
of-equilibrium dynamics of chiral fermions have inspired a
significant amount of theoretical and experimental develop-
ments in recent years. By means of the chiral magnetic
effect (CME) [1-8], one hopes, for example, to investigate
the topological structure of quantum chromodynamics
(QCD) in ultrarelativistic heavy ion collisions [9,10]; or
explore new kinds of transport phenomena in condensed
matter systems [11-14], including dissipationless electric
transport in Dirac and Weyl semimetals [12,15,16], as well
as applications to optoelectronics [17-19].

One important aspect of anomalous transport concerns
the question how chirality is transferred between gauge
fields and fermionic degrees of freedom. While in QCD
plasmas, chirality transfer can be efficiently accomplished
by sphaleron transitions between different topological
sectors of the non-Abelian gauge theory [20], the situation
is markedly different in Abelian plasmas. Quantum electro-
dynamics (QED) is topologically trivial and a different
mechanism has to be invoked to convert fermionic chirality
into magnetic helicity (and vice versa). In this context, a
novel type of “chiral” plasma instability has been suggested
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as a viable mechanism, whereby a chirality imbalance in
the fermion sector can generate helical magnetic fields that
exist on macroscopic length scales [21,22].

Such effects have been proposed as a possible explanation
for the creation of large scale helical magnetic fields in
astrophysical systems, such as supernovae and compact stars
[23-28], or in primordial plasmas of the early Universe
[29-33] where the interplay between fermion chirality and
magnetic helicity could be responsible for the transport of
magnetic helicity from microscopic to macroscopic scales.

Chiral instabilities in QED plasmas have been studied
previously based on different theoretical approaches includ-
ing magnetohydrodynamics (MHD) [34-41], compact and
noncompact lattice QED simulations [42—45], kinetic theory
[46,47], linearized perturbation theory [48], and effective
action approaches [24,26]. Despite strong theoretical inter-
est, previous studies have come to different conclusions, and
there appears to be no general agreement regarding the
detailed mechanisms and viability of such a scenario.

In this Letter we present a comprehensive study of chiral
instabilities using microscopic real-time lattice simulations
of strongly coupled QED plasmas. Starting from a helicity
imbalance in the fermion sector, we employ a classical-
statistical description [49-53] to simulate the subsequent
nonequilibrium evolution of the system from first princi-
ples. We demonstrate that chiral instabilities in QED-like
theories follow a characteristic pattern of quantum many
body systems subject to instabilities [54-59], where the
exponential growth of unstable modes leads to the
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emergence of turbulent behavior. Based on our microscopic
simulations, we are able to characterize the entire sequence
of events, starting from the extraction of growth (and decay)
rates of helical gauge field modes in the primary and
secondary instability regimes all the way to the turbulent
scaling regime, for which we extract, for the first time, the
relevant far-from-equilibrium scaling exponents.
Simulation technigue.—We perform real-time simula-
tions of N, degenerate flavors of quantum Dirac fermions
of mass m and charge e, coupled to classical-statistical U(1)
gauge fields [60-65]. By numerically solving the coupled

set of Dirac equations for fermion fields ¥, (7)

0¥ (1) = (=i DAl + m) ¥ (). (1)
where D[A] = 0" — ieAL(r) is the covariant derivative in
temporal-axial (Ay = 0) gauge, and Maxwell’s equations
for electromagnetic fields Ei(7) and Bi(7),

0,eEL (1) — [V x eBy(1)]' = —e*Njx (1), (2)

we include the effects of electromagnetic fields on the
fermion sector in Eq. (1), as well as the non-linear back-
coupling of fermion currents ji () = (3 [¥,(r', ¥, (1)]),
where WP, E‘i‘}; 0 on the dynamical evolution of the
electro-magnetic fields in Eq. (2). We note that the
classical-statistical description in Eqs. (1) and (2) is
accurate to leading order in the gauge coupling e?, but
to all orders in the coupling between gauge and matter
fields >N +[60,62]. We will specifically work in the regime
of strong interactions between gauge and matter fields with
e’N =64, which is significantly larger than in single
flavor QED (e’N +~0.09), but necessary to resolve all
relevant scales on the available size lattices.

We initially prepare the system as a chirally imbalanced
charge neutral Fermi gas, by specifying the initial occu-
pation numbers of left- (L) and right- (R) handed fermions
according to a Fermi-Dirac distribution nF/ (t=0,p) =
1/[eEn /T 4 1] with he11c1ty chemical potential y;, and

energy E, = ++/p? + m? for particles and antiparticles,
respectively. We focus on the low-temperature behavior
T/u;, = 1/8 and consider vacuum initial conditions for the
electromagnetic field sector, which are represented by a
classical-statistical ensemble of fluctuating fields [66].
We discretize the theory on a N3 spatial lattice with
lattice spacing ay, using a compact Hamiltonian lattice
formulation of QED [69], with O(a?) tree-level improved
Wilson fermions, which as detalled in [65] is crucial for
studying effects related to the chiral anomaly. Based on the
lattice discretization, the fermion field operator Wy(r)
becomes finite dimensional, and the solution to the operator
Eq. (1) can be constructed from linear combinations of a
complete set of 4N? wave functions [60,65]. We employ a
leap-frog solver with time step a; = 0.001a, to solve the

discretized equations of motions [(1) and (2)] and study
different size lattices N3 = 323,483 with spacings yj,a, =
2/3,1,1.25,1.5 to monitor residual discretization effects.
Simulations are performed close to the chiral limit m <
by employing ma, = 5 x 107* and if not stated otherwise
we show results for N? = 48> and p,a, = 1 expressed in
terms of dimensionless quantities in units of the initial
helicity chemical potential y,. We will use continuum
notation throughout the main text and refer to the supple-
mental material for a detailed description of the corre-
sponding lattice implementation.

Chiral instabilities.—Starting from an initial helicity
imbalance (), > 0) in the fermion sector, the chiral plasma
instability triggers an exponential growth of gauge fields
with right-handed (circular) polarization. Separating the
magnetic field into left- and right-handed components
according to their helicity projection in Fourier space [70]

Ip| £ ipx

B(z.p), (3)

one finds that at early times only the right-handed compo-
nents experience exponential growth within a narrow
momentum range; all other modes show a damped oscil-
latory behavior as can be qualitatively expected from the
interplay of electric-magnetic fields and currents in a
conducting medium. This is shown in Fig. 1, where we
present the evolution of the occupation numbers of left-
and right-handed components of the magnetic fields

ny/®(1,p) = [BY/R (1, p)|?

4)

for selected momentum modes with |p|/u;, = 0.1-1.0.
We further quantify this behavior in Fig. 2, where we
show the growth rates (blue symbols) for the primary
unstable and damping rates (orange symbols) of initially
stable modes, extracted from an exponential fit to the
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FIG. 1. Evolution of the occupation numbers nL/ R (1, p) of left-
handed (left panel) and right-handed (right panel) magnetic field
modes as a function of time u;,t for different momenta in the
range |p|/u; ~ 0.1-1.0. Distinct regimes of linear growth, sec-
ondary growth and onset of turbulent behavior are also indicated.
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FIG. 2. Growth rates of right-handed (blue symbols) and
damping rates of left-handed (orange symbols) magnetic field
modes in the linear instability regime.

evolution of the occupation number n5/"(r,p)
exp (F yz/&(|p|)t) in the linear instability regime.
Details of the fitting procedure are given in the
Supplemental Material [66]. Shown results for the growth
and damping rates are quantitatively consistent across
different lattices, with a maximal growth rate y,~
0.07u,, for right-handed modes with momenta |p| ~ 0.5u,,.

While the exponential growth (damping) of right- (left-)
handed modes sets in almost directly after a short delay of
unt =20-50 due to the initial quench [71], the evolution
continues in this fashion until nonlinear interactions
between unstable modes induce secondary instabilities
[58,74]. During this second phase, which in Fig. 1 occurs
around p;t =~ 250, a large range of left- and right-handed
momentum modes starts to exhibit exponential growth with
strongly enhanced growth rates yecondary ~ (2 = 3)70, until
around pt, =~ 300 the instability saturates and the expo-
nential growth terminates.

Energy and helicity transfer.—Before we describe the
dynamics at later times in more detail, it is insightful to
investigate how the conserved quantities are shared
and transferred between fermions and gauge field
throughout the evolution of the system. Clearly, the total
energy density is conserved and can be separated into
the contributions from the electromagnetic fields
e,(1) = [,{[Ex(2)/2] + [B3(r)/2]} and the fermion sector

/(1) = Ny J ([74(0), 7=y DifA] + m)#y(0)]), where
Jy = (1/V) [dx denotes volume averages. By means
of the axial anomaly relation [75,76]

atVlS(t) = —2Nf5',nh(t) +2lme/ <
Vv
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one also finds an approximate conservation law for the
net chiral charge density of the system, such that the sum
of the chiral charge density of fermions

ns(t) = Nf/v<

and magnetic helicity,
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is conserved in the chiral limit (m — 0) and we have
checked explicitly that for the small values of m consid-
ered, dissipative effects due to finite fermion mass in the
second line of Eq. (5) are negligible over the time scale of
our simulations.

Simulation results for the individual contributions to the
energy density (left panel) and net chirality (right panel)
are compactly summarized in Fig. 3. Different points in
each panel show the results for different lattice sizes and
spacings, and we have shifted the horizontal axis of the
individual data sets to account for the residual discretization
dependence in the time u,t,,, where exponential growth
saturates [77]. While initially the dominant contribution to
energy density and net chirality resides in the fermion
sector, the chiral plasma instability leads to an exponential
growth of electric and magnetic components of the energy
density. Growth rates of volume averaged quantities E? (),
B?(t), and n,,(t) are dominated by the growth rate y, of the
maximally unstable mode as indicated by the dashed line
e’ Despite the exponential increase, only a small
fraction of the total energy density e’e, ~ 0.033¢*N s,
is transferred from fermions to electromagnetic fields.
It is also interesting to observe that throughout the
evolution, the magnetic field strength exceeds the electric
one by at least one order of magnitude, B> > E?, indicat-
ing the presence of strong interactions between gauge and
matter fields.

0.08
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W 20/} Fo.07

W e%e(t)/u W e?B2(t)
2E2(t) 5
. W (ns/N¢+ 2np)/Hj
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FIG. 3. Evolution of the individual contributions to the energy

density &,,(#) (left) and chiral charge density ns(7)/N, + 2n, (1)
(right). Different symbols correspond to results obtained using
different discretizations uj,a, = 0.66—1.5 on N3 = 323,48 lat-
tices. Shaded bands in the right panel show continuum extrap-
olations (see the Supplemental Material [66]), which satisty the
anomaly relation in Eq. (5) to good accuracy.

191604-3



PHYSICAL REVIEW LETTERS 124, 191604 (2020)

When considering the balance of the net chirality in the
plasma, a manifestly different picture emerges. Despite the
fact that the (continuum) anomaly relation in Eq. (5) is
violated at finite lattice spacing, our use of operator
improvements significantly reduces discretization effects,
allowing us to perform controlled continuum extrapola-
tions, which are consistent with conservation of the net
chirality, as is indicated by the shaded bands in the right
panel of Fig. 3. While the continuum extrapolation is
subject to relatively large uncertainties due to the available
lattice sizes, we can safely infer that a substantial amount
of the axial charge density of fermions ns(t=0)~
0.039/42N ¢ 1s transferred to magnetic helicity density over
the course of the evolution. Specifically, we find that for
the two largest lattices available, the magnetic helicity
eventually dominates over the axial charge of fermions, i.e.,
n,(t) Z ns(t)/ Ny at late times.

Chiral turbulence.—Subsequent to the saturation of
unstable growth, the plasma enters a turbulent regime
characterized by a much slower evolution of the system,
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FIG. 4. (top left) Evolution of the net magnetic helicity
spectrum Ang(z,p) during the instability and subsequent turbu-
lent regime. (top right) Self-similarity of the net magnetic helicity
spectrum in the turbulent regime, for evolution times p,t =
450...600 rescaled according to Eq. (10) with @ = 0.9, = 0.3,
and p;,t* = 375. (bottom) Evolution of the spectrum né/ R(t, E,)
of left- or right-handed fermions shows a clear depletion of the
axial charge imbalance.

which we analyze in terms of the (dimensionless) magnetic
field and fermion spectra depicted in Fig. 4 at different
times p,t = 100-600. Spectral distributions of the net
helicity in the gauge field sector, i.e., the difference
between occupation numbers of left- and right-handed
magnetic field modes

Ang(t,p) = ng(1,p) — nj(1. p), (8)

are presented in the top panel, whereas the lower panel
shows the spectra of left- and right-handed fermions

A

ng/® (1, £Ey) = (B} (0)uf p(p)up (@) ¥ (1)), (9)

extracted from gauged fixed equal time correlation func-
tions of the fermion field ¥, (1) = (1/V/V) [, ¥, (1)e~P*
in Coulomb gauge by performing the appropriate projec-
tions onto left- and right-handed helicity spinors u; /z(P) of
particles (4) and antiparticles (—).

Starting from the linear instability regime for u,¢ < 250,
the net helicity in the gauge sector shows an exponential
growth within a limited range of wave numbers
Ip| < 0.8y, while left- and right-handed fermion spectra
remain essentially unchanged with distinct sharp Fermi
surfaces separated by the helicity chemical potential, shown
in the lower panel of Fig. (4). Secondary growth of
instabilities between p,t = 250-300 leads to a strong
population of magnetic field modes at low and high wave
numbers. Over the same period of time the rapid changes in
the gauge field sector are accompanied by a significant
heating and depletion of the helicity imbalance in the
fermion sector, as can be inferred from the softening of the
Fermi surface along with narrowing of the gap between
left- and right-handed modes. Eventually, for u,,t 2 300, the
growth of the chiral instability saturates, and the evolution
slows down considerably compared to the rapid changes at
earlier times.

In the turbulent regime the spectrum of magnetic helicity
Ang(t,p) exhibits a self-similar scaling behavior, which is
illustrated in the top right panel of Fig. 4. Upon rescaling,
the spectra at different evolution times p;,¢t = 450-600 are
all found to collapse onto a single scaling curve f(|p|).
While a detailed characterization of the scaling function
fs(Ip]) is beyond the scope of this Letter, we note that for
intermediate momenta, the scaling function f(|p|) ~ |p|™
features a power law behavior with a large scaling exponent
k = 10.2 £ 0.5 illustrated by the gray dashed line. Due to
self-similarity, the late time evolution of the spectrum of
magnetic helicity can be characterized in a compact form

e*Ang(1,p) = °f (7 |p]). (10)

with scaling exponents «, # and scaling function f;, where
7= (1 — ') is a dimensionless time variable with respect
to the reference time yu,t* ~ 375 for the transition to the
turbulent regime. Notably, a self-similar behavior as in
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Eq. (10) is characteristic for the late stage evolution of
unstable systems, and has been reported previously in a
variety of different contexts [55,78,79]. In all of these
examples, the initial instability leads to a rapid memory loss
of the initial conditions, such that the subsequent turbulent
evolution is universal and entirely characterized by a, f,
and f, which describe the transport of a conserved quantity
across a large separation of scales. Based on a statistical
scaling analysis, following the procedures outlined in [79]
(see the Supplemental Material [66] for details), we obtain
the following estimates for the scaling exponents
a=1.14 £ 0.50, p=0.37+0.13.
Since the magnetic helicity density n, can be equivalently
expressed as an integral over the net helicity spectrum
n,(t) = € [[(d®p)/(2x)’)Anp(t,p), one finds that the
approximate validity of the scaling relation a ~ 3/ implies
the conservation of the magnetic helicity of the plasma at late
times, which is consistent with the behavior seen in Fig. 3.
One therefore concludes that the self-similar behavior in
Eq. (10) should be associated with an inverse cascade of
magnetic helicity, which is transported from microscopic
(¢ ~ ;") to macroscopic length scales (£ ~ uj;'7”) [80].
Strikingly, the inverse cascade of magnetic helicity also
manifests itself directly in the spatial structure of the
magnetic field configurations, as illustrated in Fig. 5
where we show stream tracing plots of the magnetic field
lines, colored by the relative magnetic field intensity
B:(1)/ [, B%(r). Starting from a significant number of
small scale swirls at y;,t = 350 where the unstable growth
saturates, one observes a clear coarsening of the magnetic
fields towards later times p;,t = 600, where a few swirls fill
the entire simulation volume. It is also evident from Fig. 5
that the QED plasma develops sizeable inhomogeneities
over the course of the evolution of the chiral instability,
which also manifest themselves in other observables such

BX(t)/ J, BX(1)
12 3 4

O —

mpt = 350

FIG. 5. Visualization of magnetic field lines at times ;¢ = 350
(left) and pj,t = 600 (right). Coarsening of the magnetic field
lines due to the inverse cascade of magnetic helicity is observed.

as, e.g., vector or axial charge densities which are not
shown here but will be discussed in a forthcoming
publication [81].

Conclusions and outlook.—We presented an ab initio
study of chiral instabilities and chiral turbulence, based on
microscopic real-time lattice simulations of strongly
coupled QED. Chirality transfer through chiral instabilities
and the subsequent generation of macroscopic helical
magnetic fields proceeds in a three stage sequence.
Initial primary growth is followed by secondary growth
until the instability saturates, when the gauge field occu-
pation numbers become nonperturbatively large. During
the unstable phase, the fermion chirality is significantly
depleted and transferred into magnetic helicity, while most
of the energy is still carried by fermions. Subsequently, the
system enters a turbulent regime, where magnetic helicity is
transported to large distances by an inverse cascade.

While our current study established the dynamics of
chiral turbulence close to the chiral limit (m < u;,, T) for
strongly coupled QED plasmas (e?N ¢ > 1), one important
next step would be to explicitly verify the universality of
our results by varying the coupling strength e’N ¢ and
further explore the impact of dissipative effects due to finite
fermion mass on the chiral turbulent regime. With regards
to the dynamics of the chiral magnetic effect in QCD, it
would also be interesting to investigate and compare the
analogous dynamics in non-Abelian gauge theories, where
one ultimately expects the chirality imbalance in the
fermion sector to be absorbed into a nontrivial topology
of the non-Abelian gauge fields [20].
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