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We initiate a systematic, non-perturbative study of the large-N expansion in the two-dimensional
SUðNÞ × SUðNÞ principal Chiral model (PCM). Starting with the known infinite-N solution for the ground
state at fixed chemical potential, we devise an iterative procedure to solve the Bethe ansatz equations order
by order in 1=N. The first few orders, which we explicitly compute, reveal a systematic enhancement
pattern at strong coupling calling for the near-threshold resummation of the large-N expansion. The
resulting double-scaling limit bears striking similarities to the c ¼ 1 noncritical string theory and suggests
that the double-scaled PCM is dual to a noncritical string with a (2þ 1)-dimensional target space where an
additional dimension emerges dynamically from the SUðNÞ Dynkin diagram.
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Introduction.—The SUðNÞ × SUðNÞ principal Chiral
field model (PCM) has been extensively studied in the
past [1–3]. An interesting field theory on its own right, it is
often pictured as the closest two-dimensional cousin of
QCD. Like QCD, PCM is asymptotically free, generates a
mass gap by dimensional transmutation, and features a
nontrivial topological expansion in ’t Hooft’s large-N limit.
The latter point suggests that in the strong-coupling regime,
when planar diagrams become dense, the theory may have
a dual string description. What kind of string theory arises
that way, and whether such description exists at all is
unclear at the moment. At the same time, PCM is
completely integrable [4–7] and integrability gives us a
powerful insight into genuinely nonperturbative dynamics.
In particular, the particle spectrum of PCM and its exact S
matrix are explicitly known from integrability. PCM was
studied, for various values of N, numerically, using
Monte Carlo simulations [8,9] or by analytic integrabil-
ity-based methods, such as TBA and Destri–de Vega
equations [10,11], Riemann-Hilbert equations based on

Hirota relations for transfer matrices and Baxter Q
systems [12–14].
The simplest handle to control the coupling strength in

PCM is the chemical potential or, equivalently, a fixed
density of global conserved charge. An interaction strength
can be dialed to genuine strongly coupled regime by
considering a very dilute system. Quite remarkably, the
linear integral equation of the Bethe ansatz [6] describing the
finite-density state of PCM appears to be exactly solvable in
the planar N → ∞ limit at any density, at least for a
particular configuration of the chemical potentials arranged
along the first Perron-Frobenius mode on the AN−1 Dynkin
diagram [15,16]. While consistent with the expected asymp-
totic freedom at large densities, the solution reveals a
remarkable nonperturbative behavior at threshold, the small-
est possible value of the chemical potential that leaves only a
few excitations above the vacuum. Instead of the typical
power-law scaling, F ∼ Δν, expected of weakly interacting
particles, where ν ¼ 2 for bosons and ν ¼ 3=2 for fermions,
the free energy in PCM displays a logarithmic threshold
singularity: F ∼ Δ=j lnΔj, where Δ ¼ h=m − 1, and h is
the chemical potential. The logarithm here arises because
the mass spectrum becomes gapless and continuous in the
large-N limit. As noticed already in [16], the log-behavior
is reminiscent of the c ¼ 1 bosonic string theory in its
dual matrix quantum-mechanical (MQM) formulation [17].
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The double-scaled form of the MQM can be identified with
the full c ¼ 1 string field theory, encoding the interaction of
strings in the topological 1=N ’t Hooft expansion [18–21].
We are going to develop a systematic 1=N expansion

around the infinite-N solution of PCM [16] and work out
explicitly the first few orders. The structure of those reveals
a new double scaling limit in which large N is combined
with a near-threshold limit. The parallels to the c ¼ 1 string
are striking and it is plausible that the double-scaled version
of PCM defines a noncritical string theory in a similar
guise. The AN−1 Dynkin diagram would then play the role
of the hidden dimension, and we speculate that the putative
noncritical string dual of PCM has a (2þ 1)-dimensional
target space.
Large N expansion.—The PCM is defined by the

Lagrangian

S ¼ N
λ0

Z
d2x trDμg†Dμg; ð1Þ

and describes massive particles which gain their mass by
dimensional transmutation of the bare coupling λ0. The
lightest particle transforms in the bi-fundamental represen-
tation of SUðNÞ × SUðNÞ, the rest are l-particle-bound
states. Their exact spectrum is given by the formula

ml ¼ m
sin πl

N

sin π
N

; l ¼ 1;…; N − 1: ð2Þ

A finite density is induced by constant gauging of the
SUðNÞ × SUðNÞ global symmetry: D0 ¼ ∂0g − ði=2Þ
ðHgþ gHÞ, D1 ¼ ∂1. Following [15,16] we consider a
special choice of chemical potentials H ¼ diagðh1;
h2 − h1;…; hN−1 − hN−2;−hN−1Þ:

hl ¼ h
sin πl

N

sin π
N

: ð3Þ

As shown in [16], following [5,6,22], this choice
simplifies the Bethe ansatz equations, which in the thermo-
dynamic limit boil down to a single integral equation:

Z
B

−B
dθ0Kðθ − θ0Þεðθ0Þ ¼ h −m cosh θ ð4Þ

with the kernel

KðθÞ ¼
Z þ∞

−∞

dω
2π

e−iωθRðωÞ;

RðωÞ ¼ π

2N

sinh πjωj
N

cosh πω
N − cos π

N

: ð5Þ

The function εðθÞ defines the energy of particles (at
jθj > B) and holes (at jθj < B). Take, for the sake of the

argument, ω → ∞ (this is only justified at finite N and
h → m). The function RðωÞ approaches a constant at large
ω, and so in this limit the kernel turns to the delta function.
The solution εðθÞ then coincides with the energy of free
nonrelativistic fermions that fill available energy levels up
to the Fermi rapidity B ¼ arccoshðh=mÞ ≈ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðh=m − 1Þp
.

In general, when no approximations are made, the Fermi
rapidity is determined self-consistently from the condition
εðBÞ ¼ 0. The free energy of the ground state is given by

E≡ −N2h2f ¼ −
m

8 sin2 π
N

Z
B

−B
dθεðθÞ cosh θ: ð6Þ

The kernel in the integral equation admits a regular 1=N
expansion:

RðωÞ ¼ jωj
1þ ω2

þ π2jωj
12N2

þ π4

720N4
jωjð3 − ω2Þþ; � � � : ð7Þ

The leading-order solution, obtained by keeping just the
first term, is a semicircle [15]:

ε0ðθÞ ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
0 − θ2

q
: ð8Þ

Applying the integral operator from (4) to this function
produces two terms, a constant and cosh θ and coefficient
matching determines B0 [15,16]:

m
h
¼ B0K1ðB0Þ; ð9Þ

where K1ðxÞ is a modified Bessel function.
A peculiar feature of the large-N solution is noncom-

mutativity of limits ω → ∞ and N → ∞. As we have seen
before, the kernel RðωÞ approaches a constant if ω → ∞ is
taken before large-N, but if the large-N limit is taken first
(1 ≪ ω ≪ N), the kernel behaves differently infinity:
RðωÞ → jωj=ð1þ ω2Þ → 1=jωj. The 1=jωj asymptotics
translates into a short-distance log-singularity in the coor-
dinate representation which feeds back into the pseudoe-
nergy by changing its boundary behavior. The function
εðθÞ acquires a square-root branch point at the Fermi
rapidity instead of crossing it linearly. This pattern is
specific to the Bogolyubov limit of Bethe equations and
arises whenever the latter describe Bose condensation of
weakly interacting particles. The best studied example is
the Lieb-Liniger model [23] at weak coupling [24–28]. The
large-N limit of the vector OðNÞ model and the nearly-
isotropic XXZ spin-chain in the magnetic field feature very
similar behavior [29]. The spectrum in all these cases has
a clear semiclassical interpretation. The particle branch
describes Bogolyubov modes, while holes correspond to
dark solitons on top of the Bose-Einstein condensate [25].
There is no such semiclassical picture behind the large-N
PCM where 1=N controls interactions among strings rather
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than particles but the structure of the Bethe equations is not
much different, and one can use the same perturbative
methods to solve the equations order by order in the large-
N expansion. The idea, originally proposed for the Lieb-
Liniger model [26], consists in solving the equations
intermittently in the bulk and at the boundaries of the
finite Fermi interval. Technically similar but physically
distinct solution arises in the perturbative regime when the
Fermi interval grows large and the equations can be solved
by the Wiener-Hopf method [30], extended and streamlined
in the recent work [28,31,32].
To find the first 1=N correction to (8), consider the

following ansatz:

ε1ðθÞ ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − θ2

p
þ hα

N
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 − θ2
p : ð10Þ

The integral operator again returns a constant and a cosh
leaving

BK1ðBÞ −
α

N
K0ðBÞ ¼

m
h

ð11Þ

as a single constraint which extends (9) to the next order in
1=N. This condition can be regarded as an equation for B or
for α, but cannot fix both parameters at the same time.
Another apparent problem is the wrong boundary behavior.
The 1=N correction blows up at the Fermi point. This does
not look right. The two problems are not unrelated and
signal the breakdown of our approximations as θ
approaches �B. Indeed, the two terms in (10) become
comparable for Bþ θ ∼ 1=N, while the second term is
supposed to be a small correction. Next terms will also be
of the same order, and near the boundary the equation has
to be solved anew. Large boundary deviations are clearly
visible in the numerical solution displayed in Fig. 1.
In the vicinity of the Fermi point the pseudoenergy

behaves as εð−Bþ x=NÞ ≃ h
ffiffiffiffiffiffiffiffiffiffiffiffi
2B=N

p
uðxÞ, where uðxÞ is

some order-one function, which can itself be expanded in
1=N. It is important to realize that 1=N counting is different
at the boundary and in the bulk. Taking consecutive orders

of the bulk expansion (8), (10) and enlarging the endpoint:
εnð−Bþ x=NÞ ≃ h

ffiffiffiffiffiffiffiffiffiffiffiffi
2B=N

p
vnðxÞ, we get functions of the

same (leading) order in 1=N: v0ðxÞ ¼
ffiffiffi
x

p
and v1ðxÞ ¼ffiffiffi

x
p ð1þ α=2BxÞ. At large x we get better and better

approximants for uðxÞ: uðxÞ ≃x→∞
vnðxÞ.

The integral equations near the boundary can be solved
by the Wiener-Hopf method. The Fourier image of the
solution at the nth perturbative order is

unðkÞ ¼ GnþðkÞres
p¼0

Gn
−ðpÞRnðpÞvnðp;NÞ

k − p
; ð12Þ

where RnðkÞ is NRðωÞ expanded to the nth order in 1=N
with ω replaced by kN. For instance, at the leading order,
R0ðkÞ ¼ 1=jkj, while v0ðkÞ ¼

ffiffiffi
π

p
=2ði=kÞ3=2. The func-

tionsG�ðkÞ are defined by theWiener-Hopf decomposition
of the exact kernel: R−1 ¼ NGþG−, such that G−1þ is
analytic in the upper half-plane and G− in the lower one:

G�ðkÞ ¼
2�ikþ1k∓1ffiffiffiffiffiffiffiffiffiffiffiffi

k� iε
p

Bð1 − 1
2N ∓ ik

2
; 1
2N ∓ ik

2
Þ ; ð13Þ

where Bða; bÞ is Euler beta function. The analytic form of
jkj is implied in all formulas,

ffiffiffiffiffiffiffiffiffiffiffiffi
kþ iε

p ffiffiffiffiffiffiffiffiffiffiffiffi
k − iε

p
, whereffiffiffiffiffiffiffiffiffiffiffiffi

k� iε
p

is defined with a cut in the lower or upper half-
plane. Functions Gn

�ðkÞ are nth order approximants of
G�ðkÞ in 1=N.
Taking v0 as a seed, we get the leading-order boundary

function:

u0ðkÞ ¼
1

2
ffiffiffi
π

p
�
i
k

�
3=2

B

�
1

2
;
1 − ik
2

�
: ð14Þ

The solution has to match with the bulk at large x or,
equivalently, at small k: u0ðkÞ ∝ k−3=2 þ ik−1=2 ln 2 which
translates into u0ðxÞ ∝ x1=2 − x−1=2 ln 2=2. Comparing with
(10) we not only reproduce the boundary asymptotics
of (8), guaranteed by construction, but can read off the
coefficient of the next term: α ¼ −B ln 2. The bulk con-
sistency condition (11) then determines the first correction
to the Fermi rapidity: B ¼ B0 þ ln 2=N.
The expansion of the free energy starts at Oð1=N2Þ, as

expected, because 1=N corrections to εðθÞ and to B
compensate one another. We need the next iteration. The
procedure should be clear by now. A new ðB2 − θ2Þ−3=2
term appears in the bulk whose coefficient is matched to
the leading-order boundary solution, but corrections to the
ðB2 − θ2Þ�1=2 terms appear at this order too, and to fix
those we need the next-order boundary solution. The latter
is obtained by taking v1ðxÞ as a seed in (12). The procedure
can be iterated, in principle, to any desired order in 1=N.

FIG. 1. Blue line: exact numerical solution ϵðθÞ for N ¼ 30,
Δ ¼ 2−3, and h ¼ 1. Yellow line: solution ϵ0ðθÞ in the leading
order; semicircle of radius B0ðΔÞ.
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The nth order bulk ansatz has the form

εnðθÞ ¼ h
X
kþs≤n
k;s≥0

αk;s
Nkþs ðB2 − θ2Þ1=2−k: ð15Þ

The integral operator (7) evaluates on this ansatz to a linear
combination of a constant and cosh θ, yielding two con-
ditions sufficient to fix B and all α0;s. The rest are
determined by solving the boundary problem (12) and
matching. The boundary always lags one order in 1=N
behind the bulk. The first few coefficients are

α0;0 ¼ 1; α0;1 ¼ α0;3 ¼ 0; α0;2 ¼ −
π2

12
;

α1;0 ¼ −B log 2; α2;0 ¼ −
B2

24
ðπ2 þ 12log22Þ;

α1;1 ¼
log22
2

; α1;2 ¼
3ζð3Þ
32B

þ 1

12
B½3ζð3Þ þ π2 log 2�;

α2;1 ¼
1

24
B½9ζð3Þ þ 12log32þ 2π2 log 2�;

α3;0 ¼ −
1

8
B3½6ζð3Þ þ 4log32þ π2 log 2�: ð16Þ

To the same order,

B ¼ B0 þ
ln 2
N

−
π2K1

24K0N2
þ ζð3Þð4B0K1 − 3K0Þ

32B2
0K0N3

;

where B0 is the solution of the transcendental equation (9)
and Kn ≡ KnðB0Þ.
The energy f ¼ P

N−ifi is entirely determined by the
bulk solution. To the first three orders,

f ¼ B2
0I1K1

8π
þ πB2

0K1ð7I1K0 − I0K1Þ
192K0N2

þ ζð3ÞK1

64πK0N3
:

We have checked this result numerically, sample data are
presented in Table I. The first nonplanar correction, not
surprisingly, arises at 1=N2, but the next order violates
conventional 1=N counting. The origin of the odd term can
be traced back to Feynman diagrammatics. At finite density
each facet of a double-line diagram is decorated by a
chemical potential qj ¼ hj − hj−1. The propagator between
the jth and kth facets depends on the difference qj − qk.
Instead of plain N2 factors we will thus get sumsP

jk fðqj − qkÞ. For sufficiently regular fðqÞ this modifi-
cation of Feynman rules plays no role as such sums have a
regular expansion in 1=N2, but nonanalyticities in fðqÞ, for
instance logarithmic, give rise to a local anomaly from
j − k ≪ N that generates odd powers of N. This is exactly
what happens in PCM (and more generally in any large-N
theory with a running coupling) because some fðqÞ are
destined to have RG logs due to UV divergences.

At weak coupling (h ≫ m), the free energy is known for
any hl and N [10]. We have explicitly checked that the
large-N anomalies do arise, with ensuing odd powers of N
appearing in the large-N expansion. At weak coupling the
Fermi energy is large:

B0 ¼ ln
h
m
þ 1

2
ln ln

h
m
þ 1

2
log

π

2
; ð17Þ

up to log-suppressed terms. This expression coincides
with the two-loop running coupling of the sigma-model
in a particular scheme. This suggests to identify λðhÞ≡
4π=BðhÞ with the effective coupling at scale h beyond
perturbation theory [15,16]. Expanding the free energy at
large B0, we get:

f ¼ B0

16π
þ ð6B0 − 1Þπ

384N2
þ ζð3Þ
64πN3

; ð18Þ

where only terms nonvanishing at B0 → ∞ are explicitly
shown. They perfectly agree with the known large-h, any-N
result [10], including the nonanalytic 1=N3 term.
We now turn to the opposite, strong-coupling regime

which arises when h approaches m from above, Δ ¼
h=m − 1 becomes small and the Fermi interval collapses
to a point: B2

0 ≃ 4Δ=j lnΔj. At higher orders we find:

B ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ

j lnΔj

s
þ ln 2

N
−

π2

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δj lnΔjp

N2
−
3ζð3Þj lnΔj
128ΔN3

:

Quite amazingly, the scaling with Δ is correlated with the
order of the topological expansion. The same holds for the
free energy:

f ¼ Δ
4πj lnΔj −

π

96j lnΔjN2
þ ζð3Þ
64π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δj lnΔjp

N3
: ð19Þ

Forgetting logarithms, the genus-g contribution scales as
Δ1−g=2, suggesting a correlated, simultaneous limit Δ → 0,
N → ∞ may exist. This is strikingly similar to the large-N
expansion in the matrix quantum mechanics, where loga-
rithms also arise, but do not preclude a sensible double-
scaling limit. The double-scaling limit in that case is dual to

TABLE I. In the first two columns we present the difference
½fnumðΔ; NÞ − f0ðΔÞ − N−2f2ðΔÞ�N3 between numerically cal-
culated energy fnumðΔ; NÞ and the contribution from the first two
terms f0ðΔÞ þ N−2f2ðΔÞ. In the last column we give the value of
the third order correction f3ðΔÞ.

ΔnN 30 60 f3ðΔÞ
2−3 0.011 86 0.012 35 0.012 17
2−4 0.014 67 0.014 86 0.014 88
2−5 0.018 87 0.018 68 0.018 64
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nonperturbative c ¼ 1 string theory, and we expect a
similar story to unfold for PCM.
When the energy is re-expressed through B, another

miracle happens—all logarithms disappear giving rise to a
regular series in 1=BN:

N2f ¼ B2N2

16π
−
BN ln 2
8π

þ ln2 2
16π

þ 3ζð3Þ
256πBN

: ð20Þ

This suggests to define the double-scaling limit as

N → ∞; h → m; b ¼ BN − fixed: ð21Þ

Since 4π=b is the running coupling, we can identify the
double-scaling limit with the large-N limit wherein the
ordinary (not ’t Hooft!) coupling is held fixed.
Double-scaling limit.—A straightforward attempt to

take the limit directly in the integral equation runs into a
subtlety alluded to before. The kernel (5) with rapidity and
frequency rescaled as t ¼ Nθ, k ¼ ω=N diverges in the
large-N limit. The divergence can be renormalized away by
subtracting a constant:

KDSðtÞ ¼
N→∞

Z
∞

−∞

dk
2π

e−ikt
�

sinhπjkj
2j sinh π

2
ðkþ i

NÞj2
− 1

�
−

2

π2
ln
N
π

¼ 1

π2

�
2ψð1Þ− ψ

�
1þ it

π

�
− ψ

�
1−

it
π

��
; ð22Þ

where ψðxÞ is digamma function.
To get rid of the constant we can simply differentiate (4)

and take the limit N → ∞, B → 0 afterwards. In terms
of the rescaled pseudoenergy εDSðtÞ ¼ ðπN=2mÞϵðt=NÞ
we get:

ε0DSðtÞ þ
Z

b

−b
dsKDSðt − sÞε0DSðsÞ ¼ −t: ð23Þ

The integral operator now has a zero mode, the constant
function. This additive ambiguity can be used to impose
the boundary conditions, so the equation itself does not
determine b any more. In other words, a solution with
εDSð�bÞ ¼ 0 exists for any b, and such a solution is unique.
For the free energy we then get:

fDS ≡ lim
N→∞

N2f ¼ 1

4π3

Z
b

−b
dtεDSðtÞ: ð24Þ

These two equations solve for the energy as a function
of b. To express it through Δ, which is the real physical
parameter, an extra constraint is needed. The requisite
condition can be obtained by setting θ ¼ 0 in the original
equation:

N2Δ − 8πfDS ln
N
π
¼ εDSð0Þ þ

Z
b

−b
KDSðtÞεDSðtÞ: ð25Þ

This somewhat contrived equation tells us howΔ should be
adjusted to achieve the double-scaling limit. Since the
right-hand side is manifestly finite, the left-hand side
should remain finite as well. This describes a complicated
trajectory ΔðNÞ that takes us into the DS limit, to the
leading order in 1=N. Because of the logarithmic behavior
of the psi function, Δ will also contain logs of b when b
becomes large.
The large-b limit should match with the ordinary large-N

expansion at small B. To check this we have calculated the
energy fDS to a few lowest orders in 1=b by solving (23)
with the ansatz

εDSn ðtÞ ¼
X
kþs≤n
k;s≥0

βk;sbk−sðb2 − t2Þ1=2−k; ð26Þ

and matching it to the Wiener-Hopf solution at the
boundary:

uDSn ðkÞ ¼ GDSþ ðkÞres
p¼0

GDS
− ðpÞRDS

n ðpÞvDSn ðpÞ
k − p

; ð27Þ

where the Wiener-Hopf kernels GDS
� ðkÞ are obtained by

setting N ¼ ∞ in (13) and RDS
n ðkÞ ¼ 1=kþ π2k=12−

ð1=720Þπ4k3þ; � � �, is the Laurent expansion of
ðπ=2Þ cothðπk=2Þ to (n − 1)th order in k. Computation
largely parallels the analysis of the exact equation (4).
The expression for the energy takes particularly compact

form if b is shifted by a constant: b ¼ b̃þ log 2. Then in
first five orders:

fDS ¼
b̃2

16π
þ 3ζð3Þ
256πb̃

þ 135ζð5Þ
16384πb̃3

; ð28Þ

which perfectly matches with (20). There is a freedom
of further redefinition b → b̄ðbÞ, which reflects scheme
dependence of the running coupling λ ¼ 4π=b. When
expressed in terms of the physical parameter Δ, the free
energy of course becomes unambiguous. From (25) we get
in first three orders:

N2Δ ¼ b̃2

2
ln
2Ne1=2−γ

b̃
þ π2

24
þ 3ζð3Þ

32b̃
ln
2Ne−4=3−γ

b̃
: ð29Þ

Comparing these formulas to similar expressions for the
c ¼ 1 string theory in its matrix quantum mechanics guise
[33], it is tempting to interpret the energy f as the partition
function of the (2þ 1)-dimensional string theory, and
parameter 1=b̃ as the string coupling: b̃ ¼ 1=gs. Scheme
dependence that we observe here arises in c ¼ 1 as well. It
is desirable to find a set of universal, cutoff-independent
quantities (in c ¼ 1 such quantities are derivatives of the
free energy with respect to the Fermi level, see Sec. 8 of
[33]). Their geometrical interpretation may open an avenue
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for the dual string description of PCM in parallel to c ¼ 1
string theory.
We finish with a few obvious points left aside in the

present work. The large-b expansion is likely asymptotic
and is accompanied by exponential corrections that in
principle can be computed by an extension of the Wiener-
Hopf method [30] and then organized in trans-series, in the
spirit of resurgence program. The emergent stringy dimen-
sion should arise upon revival of higher modes along the
Dynkin diagram, which have been frozen in our setup.
Considering the theory at finite temperature or on a finite
spacial circle with twisted boundary conditions [14] would
be an interesting avenue to explore and compare with the
similar c ¼ 1 string context [34,35]. It is interesting to
notice that the DS regime in PCM arises at strong coupling
pointing, perhaps, to holographic nature of the resulting
string description. The 3D low-energy effective action for
the quasienergies (or densities) along the Dynkin diagram
may elucidate the dynamical features of the dual string
theory, as does the Das-Jevicky effective action for the
c ¼ 1 string [36].
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