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We study the equation of state (EOS) of an accreting neutron star crust. Usually, such an EOS is obtained
by assuming (implicitly) that the free (unbound) neutrons and nuclei in the inner crust move together. We
argue that this assumption violates the condition μ∞n ¼ const, required for hydrostatic (and diffusion)
equilibrium of unbound neutrons (μ∞n is the redshifted neutron chemical potential). We construct a new
EOS respecting this condition, working in the compressible liquid-drop approximation. We demonstrate
that it is close to the catalyzed EOS in most of the inner crust, being very different from EOSs of accreted
crust discussed in the literature. In particular, the pressure at the outer-inner crust interface does not
coincide with the neutron drip pressure, usually calculated in the literature, and is determined by hydrostatic
(and diffusion) equilibrium conditions within the star. We also find an instability at the bottom of the fully
accreted crust that transforms nuclei into homogeneous nuclear matter. It guarantees that the structure of the
fully accreted crust remains self-similar during accretion.
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Introduction.—Neutron stars (NSs) are the densest
objects in the Universe. The composition of their deepest
layers (inner core) is uncertain and is considered as the
main mystery of NS physics [1]. In contrast, it is believed
that the composition of their outer layers, the so-called
NS crust, is relatively well known. The outer region of the
neutron star crust, referred to as the outer crust, is
composed of atomic nuclei on the neutralizing background
of degenerate, almost ideal electron gas. In the deeper
layers, called the inner crust, unbound neutrons are also
present [1,2]. With the subsequent increase of the density,
the crust ends and we reach the outer core, which (in the
vicinity of the crust-core boundary) is composed of
neutrons (n), protons (p), and electrons (e).
The only way to check whether theoretical models of

superdense matter are reliable is to confront them with NS
observations. One of the most promising possibilities in
this regard is to study accreting NSs, which are observed in
binary systems with active mass transfer from a companion
star. For some of these sources, the accretion process is
transient, and, in quiescent periods, x-ray telescopes are
able to detect the thermal emission from the NS surface,
revealing that it is heated up by accretion [3–6]. It is
generally believed that the heating is caused by nonequili-
brium nuclear reactions, which are initiated in the crust as it
is compressed under the weight of newly accreted material.
Obviously, an adequate interpretation of observations
requires a reliable model describing this process (see [7]
for a recent review). A similar process can also be important
for reheating of millisecond pulsars [8].
Starting with Ref. [9], a number of authors study the

evolution of an accreted element as it compresses and sinks
deeper and deeper toward the NS core in the course of

accretion. Some of them used a one-component approxi-
mation [10–14], while others used reaction networks,
allowing for mixtures of different nuclei [15–18]. They
applied either liquid-drop models [10–13,15,18], up-to-date
theoretical atomic mass tables [16,17], or detailed extended
Thomas-Fermi calculations, allowing for the existence of
unbound neutrons [14]. The main common feature of all
these works is that they follow compositional changes
associated with reactions induced by the increasing pressure
inside an accreted fluid element (“traditional approach”).
Such a consideration would be clearly applicable if we
compressed uniform infinite matter. But in reality the inner
crust is not uniform, so that unbound neutrons can travel
between different layers to lower the system energy [19].
The traditional approach was known to lead to jumps of

the neutron chemical potential μn at the phase transitions,
which are especially pronounced in the one-component
approximation and considerably soften if mixtures of
nuclei are allowed for [15]. However, these effects were
typically considered as a local inconsistency, which, likely,
does not affect the global properties of the accreted crust.
In this Letter, we show that it is not the case and that
allowing unbound neutrons to move independently of
nuclei has a dramatic effect on the crust composition
and equation of state (EOS). We construct the correspond-
ing EOS within the compressible liquid-drop model
(CLDM), which ignores pairing and shell effects. This
EOS is fully thermodynamically consistent; in particular,
μn in the inner crust is continuous and, moreover, satisfies
the hydrostatic (and diffusion) equilibrium condition μ∞n ¼
const (see below), where μ∞n ≡ μn expðν=2Þ is the red-
shifted μn and ν ¼ 2ϕ=c2 (ϕ is the gravitational potential
and c is the speed of light [1]).
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The calculated EOS significantly differs from EOSs
obtained within the traditional approach, being very close
to the EOS of catalyzed crust.
In Ref. [20], we demonstrate an additional inconsistency

of the traditional approach: It leads to a strong violation of
the force balance equation for nuclei (gravitational and
electric forces are both directed downward) in a few rather
extended regions of the inner crust, thus revealing incon-
sistency of the traditional approach from another point
of view.
Equilibrium condition for unbound neutrons.—

Neutrons, not bound to nuclei, exist in the inner NS crust.
Except for a narrow layer of width L near the outer-inner
crust interface (L≲ 5 m for T ¼ 5 × 108 K), they are
superfluid (e.g., Ref. [2]) and move with velocity Vsn,
governed by the (linearized) superfluid equation
mn∂Vsn=∂t ¼ −∇μ∞n , where mn is the neutron mass
(see, e.g., Refs. [21–23]). The hydrostatic equilibrium
implies μ∞n ¼ const as a necessary condition in the whole
region of neutron superfluidity.
In the narrow nonsuperfluid layer, the typical diffusion

time τD ∼ L2=D≲ 3 × 106 s (the neutron diffusion coeffi-
cientD is estimated in analogy to Ref. [24]) is much smaller
than the replacement timescale of this layer by accretion,
∼ρL= _M≳2×109 s (we take ρ∼4.3×1011 gcm−3 for the
density and assume that _M equals the local Eddington
accretion rate _M ∼ 105 g cm−2 s−1). As a result, unbound
neutrons in the nonsuperfluid layer should be, to a good
approximation, in diffusion equilibrium: μ∞n ¼ const.
Three crustal EOSs.—The typical temperature in the

crust of accreting NSs is T ≲ 5 × 108 K and has a minor
effect on the EOS [1], so below we shall work in the
approximation of T ¼ 0. As discussed above, neutron
hydrostatic and diffusion (nHD) equilibrium conditions
imply μ∞n ¼ const in the whole inner crust (we assume that
the region of neutron superfluidity extends to the crust-core
boundary). To illustrate the importance of this condition, let
us consider three EOSs: catalyzed (ground state) EOS,
which is believed to describe a pristine NS crust and two
EOSs for the accreted NS crust: (i) traditional, which
completely disregards neutron diffusion (denoted as “Trad”
EOS), and (ii) a new EOS that respects the nHD condition
(denoted as “nHD” EOS). For simplicity, we apply the
CLDM, in which nuclei are described as liquid drops,
located at the center of the spherical Wigner-Seitz (WS)
cells [1,2,25]. We ignore a possible layer of nonspherical
nuclei in the vicinity of the crust-core boundary (for EOSs
based on the SLy4 energy density functional, employed
here, this layer is absent [26,27]). We also assume that the
proton drip does not occur in the crust, which is true for all
numerical models discussed here. The model is parame-
trized by the number densities nni, npi, and nno for,
respectively, neutrons and protons inside and neutrons
outside nuclei; the neutron skin surface density νs; and

the volume Vc of WS cell, as well as by the (proton) radius
rp of a nucleus. In addition, it is useful to introduce the
volume fraction occupied by nucleus inside the WS cell,
w ¼ 4πr3p=ð3VcÞ; the surface area of a nucleus, A ¼ 4πr2p;
and the electron number density ne, determined from the
quasineutrality condition ne ¼ wnpi. Within the CLDM,
the energy density can be written as

ϵ ¼ wϵbulkðnni; npiÞ þ ð1 − wÞϵbulkðnno; 0Þ
þ Esðνs; rpÞ=Vc þ ECðnpi; rp; wÞ=Vc þ ϵeðneÞ: ð1Þ

Here ϵbulkðnn; npÞ is the energy density of homogeneous
nuclear matter; Es is the surface energy of a nucleus. The
Coulomb energy of a WS cell is given by EC ¼
ð16π2=15ÞðnpieÞ2r5pfðwÞ, where fðwÞ¼1–1.5w1=3þ0.5w
and ϵe is the energy density of degenerate electron gas [1].
Taking the baryon number density nb ¼ wðnpi þ nniÞ þ

ð1 − wÞnno þAνs=Vc and number density of nuclei,
nN ¼ V−1

c , to be fixed, we minimize ε with respect
to other independent variables and obtain the beta-
equilibrium, mechanical, and local neutron diffusion equi-
librium (within one unit cell) conditions. Using these
conditions (see Supplemental Material [28]), we arrive at
the two-parameter equation of state, ϵ ¼ ϵðnb; nNÞ, with the
second law of thermodynamics presented as

dϵ ¼ μndnb þ μNdnN; ð2Þ

where ∂ϵðnb; nNÞ=∂nb is denoted as μn, because it equals
the chemical potential of free (unbound) neutrons, as
follows from the minimization procedure discussed above.
The effective chemical potential μN describes the energy
change due to addition of an extra nuclear cluster to the
system at fixed nb, μN ¼ ðσA − 2ECÞ=3, where σ is the
surface tension [1] (see Supplemental Material [28]).
The catalyzed EOS corresponds to the absolute minimum
of ε at fixed nb; hence, it is given by the condition μN ¼ 0.
With this condition, the EOS becomes one-parametric, i.e.,
specified in a unique way for a given nb.
For accreted crust, T is not high enough to allow for

nuclear reactions that minimize ε by choosing nN in an
optimum way; thus, μN is, generally, nonzero. To make the
EOS one-parametric, we need an additional equation. In the
traditional approach (e.g., Ref. [10]), the equation follows
from the requirement that the total baryon number in the
WS cell is conserved: Ac ¼ nbVc ¼ const. (Note that this
equation should be modified in the regions where pycno-
nuclear reactions proceed and Ac doubles [10,12–14].)
And what about the nHD EOS? Ac is not conserved

now, because neutrons can move independently of nuclei.
Instead, this EOS should respect the nHD condition
μ∞n ¼ const, as well as the general hydrostatic equilibrium
condition P0ðrÞ ¼ −ðPþ ϵÞν0ðrÞ=2 [1], where P is the
pressure and the prime means derivative with respect to the
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radial coordinate r. Combining these two equations with
the Gibbs-Duhem relation dP ¼ nbdμn þ nNdμN , one
arrives at the requirement μ∞N ¼ μNeν=2 ¼ const. In other
words (because μneν=2 is also a constant), the ratio μN=μn
must be fixed in the inner crust, i.e., μN=μn ¼ C, or,
recalling the definition of μN ,

σA − 2EC ¼ 3Cμn; ð3Þ

where C is some constant. This condition parametrizes a
family of nHD EOSs. It allows one, in particular, to present
μn as a function of P and C: μn ¼ μnðP;CÞ. The catalyzed
EOS is a member of this family (hence, neutrons are in the
diffusion equilibrium in catalyzed matter—an expected
result); it corresponds to the choice C ¼ 0 (i.e., μN ¼ 0).
As shown below, only one particular C corresponds to the
fully accreted NS crust, which we shall be mostly interested
in what follows.
nHD EOS for a fully accreted crust.—In this case, C can

be determined from two requirements: (i) P and μn at the
crust-core boundary must be continuous; and (ii) the
structure and composition of the fully accreted crust should
not change in the course of accretion. In particular, the latter
condition means that the total number of nuclei in the crust
should be conserved. However, accretion permanently
brings nuclei to the crust. Clearly, the stationary situation
is possible only if the same number of nuclei disintegrate
somewhere in the crust.
The nHD EOS provides a natural mechanism of nuclei

disintegration due to a specific instability discussed below.
Namely, numerical calculations show that for each C there is
a maximum pressure Pmax, such that the solution to Eq. (3)
does not exist at P > Pmax (in Supplemental Material [28],
we argue that it is a general feature of nHD EOSs).
To demonstrate the physical mechanism behind the

instability, we, first of all, combine the equation P0ðrÞ ¼
−ðPþ ϵÞν0ðrÞ=2 and condition μ∞n ¼ const to derive a
relation, dμn ¼ μn=ðPþ ϵÞdP, which is valid in the nHD-
equilibrated inner crust and is equivalent to Eq. (3). It states
that μn in a given volume is fixed if P is fixed, independ-
ently of nuclear transformations occurring in this volume.
Now, let us consider a layer, initially located at Pmax, but
compressed slightly by newly accreted material, so that P is
a bit larger than Pmax. The absence of stationary solutions
at P > Pmax means that the layer should be out of beta
equilibrium at such a pressure (otherwise, it is impossible to
remain in the hydrostatic equilibrium). Then beta captures
come into play trying to return the system to beta
equilibrium, but, as we checked numerically, they are
accompanied by neutron emissions and the emitted neu-
trons diffuse out of the layer in order to preserve μn at a
givenP. As a result, the layer begins to shrink, and nuclei in
the layer start to “evaporate” (A and Z decrease) until
disintegration—the required instability.

This instability is, in fact, similar to the mechanism
discussed in Ref. [29]. Namely, at P > Pmax, nuclei
become unstable with respect to electron capture accom-
panied by emission of neutrons. Each electron capture
makes the nucleus even more unstable, leading to a series
of subsequent electron captures and neutron emissions until
complete disintegration. The instability is also analogous to
the superthreshold electron capture cascades studied in
Refs. [16,17,30], but, in contrast to these works, disinte-
gration is complete and takes place at fixed P and μn.
During accretion, the number of nuclei in the (initially

catalyzed) crust is increasing until the instability sets in at
P ¼ Pmax. Since at P > Pmax stable crust does not exist,
Pmax should coincide with the pressure at the crust-core
boundary [31]. Thus, the parameter C and, hence, nHD
EOS for a fully accreted crust (hereafter, simply “nHD
EOS”) can be determined by matching μn at P ¼ Pmax in
the crust and in the core: μnðPmax; CÞ ¼ μcoren ðPmaxÞ, where
μcoren ðPÞ stands for μn in the core.
Now we have everything at hand to find where the outer-

inner crust interface is located. To this end, we note that,
by definition, one has mn ¼ μn at the interface; thus, the
pressure Poi there can be found from the condition:
mn ¼ μnðPoi; CÞ. Note that it should not necessarily
coincide (for nHD EOS) with the neutron drip pressure
Pnd of Trad EOS, because the latter is obtained neglecting
possible redistribution of neutrons in the star.
Numerical example.—To illustrate our results, we employ

the SLY4 energy density functional [32]; the corresponding
surface energy and tension σ are adopted from Ref. [33]. We
find that the interface between the inner and outer crust is
located at 8.0 × 1029, 8.1 × 1029, and 9.1 × 1029 dyn cm−2

for catalyzed, nHD, and Trad EOSs, respectively (for the
nHD EOS, such Poi leads to C ≈ 0.0025). The correspond-
ing pressures at the crust-core boundary equal 4.93 × 1032,
5.20 × 1032, and 5.14 × 1032 dyn cm−2. For simplicity,
when considering the Trad model, we assume that the
pycnonuclear reactions take place at Z ¼ 10.
Figure 1 demonstrates three EOSs described in this

work: catalyzed (solid line), nHD (long dashes), and

FIG. 1. Pressure versus density for different crustal EOSs
discussed in the text.
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Trad (dots); the EOS of pure neutron matter (dashed line) is
added for comparison. One can see that the nHD EOS,
suggested here, significantly differs from the Trad EOS,
obtained within the traditional approach, and is much closer
to the catalyzed EOS (cf., e.g., Poi for catalyzed and nHD
EOSs: 8.0 × 1029 and 8.1 × 1029 dyn cm−2, respectively).
The flat region at ρ ∼ 1.1 × 1012 g cm−3 for the Trad

EOS corresponds to a pycnonuclear reaction. These reac-
tions are also clearly visible as jumps in Fig. 2, which
demonstrates profiles of nuclear charges Z and mass
numbers A for the same EOSs as in Fig. 1 [in
Supplemental Material [28], we also show the function
AcðPÞ]. In addition, dot-dashed lines show profiles
obtained in Ref. [14] ignoring the condition μ∞n ¼ const.
The corresponding EOSs are calculated for the Sly4 func-
tional in the extended Thomas-Fermi approach and for the
liquid-drop model of Ref. [34]. One can see that for the
traditional approach our CLDM reproduces the results of
Ref. [14] reasonably well; in particular, pycnonuclear
reactions occur three times in the inner crust.
Crust composition (i.e., Z and A) for the nHD EOS is

determined by Eq. (3). One may note that it is remarkably
different from that for the Trad EOS, being rather close
(at not too large P) to the composition of catalyzed crust.
The latter fact is not surprising, since at not too large P two
terms in the lhs of Eq. (3) are much larger than the termCμn
in its rhs; hence, Eq. (3) is quite similar to its “catalyzed”
counterpart μN ¼ 0. At larger P, surface tension decreases,
because matter inside and outside nuclear clusters becomes
more and more similar, while the term Cμn increases and,
eventually, all three terms in Eq. (3) become comparable; as
a result, Z and A for the nHD EOS substantially differ from
those for the catalyzed EOS at such P.

Discussion and conclusions.—We construct the model of
the inner crust of an accreting NS, which respects the nHD
condition μ∞n ¼ const imposed by the requirement of
hydrostatic equilibrium with respect to the superfluid
equation in most of the inner crust and by the diffusion
equilibrium in a thin layer near the outer-inner crust
interface. We find that the resulting nHD EOS is rather
close to the catalyzed one, being significantly different
from the Trad EOS obtained in the traditional approach,
which ignores the condition μ∞n ¼ const and implicitly
assumes that both nuclei and unbound neutrons move
together with one and the same velocity. Our another
important result is that we found an instability that allows
one to transform nuclei into npe matter at the crust-core
boundary and explain its physical meaning. We also
demonstrate that the interface P ¼ Poi between the
(accreted) outer and inner crust is not associated with
the “standard” neutron drip pressure Pnd, at which neutrons
“drip out” of nuclei [35]. Instead, Poi is determined by the
nHD equilibrium condition inside the star. As a result, Poi
in the accreted crust appears to be just a bit higher than in
the catalyzed crust, and nuclei at the P ¼ Poi interface
absorb neutrons rather than emit them, as in the Trad EOS.
Neutron absorptions (accompanied by electron emissions)
lead to a jump of A at the upper boundary of the inner crust
(see Fig. 2). Neutrons, necessary for such absorptions,
are supplied by upward neutron flow, which originates at
the crust-core boundary, where nuclei disintegrate into
neutrons as a result of the instability discussed above.
Then these neutrons redistribute over the inner crust and
core in order to maintain nHD equilibrium.
The similarity of nHD and catalyzed EOSs suggests that

accretion should have a less pronounced effect on the crust
thickness and tidal deformability than in the traditional
approach. It also suggests that the heat release due to
nonequilibrium nuclear reactions in the accreted crust
should be much smaller than it is usually thought to be,
and this idea agrees with apparently very different reaction
flows for the nHD EOS (e.g., pycnonuclear reactions
for the nHD EOS are absent [36]). The heat release problem
is considered in our forthcoming publication [37].
According to preliminary estimates, the net heat release
is ∼0.5–0.7 MeV=nucleon (i.e., 2–3 times smaller than
in the traditional approach), with significant fractions
released at the outer-inner crust interface and crust-core
boundary. These findings, along with the modification of
the transport properties and heat capacity (due to changed
nuclear composition), should noticeably affect the inter-
pretation of transiently accreting NSs and may shed new
light on the shallow heating and superburst ignition
problems (e.g., [7]).
The crucial role of the neutron hydrostatic and diffusion

equilibrium for an accreted crust EOS, revealed in this
Letter, is a general feature, which cannot be disregarded
(see also [20]). However, we should warn the reader that

FIG. 2. The nuclei charge Z and atomic mass number A as a
function of the pressure for different crustal EOSs.
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our results are illustrated within the simplified CLDM,
which treats nuclear mass and charge numbers as continu-
ous variables and neglects pairing and shell effects. In
Ref. [14], the latter are shown to be important for the energy
release in the traditional approach. According to our
preliminary results, obtained within the nHD approach,
shell effects mainly influence the profile of the heat release
and composition of the crust; at the same time, the PðρÞ
dependence is not strongly affected.
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