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This Letter unravels an interesting property of a one-dimensional lattice model that describes a single
itinerant spinless fermion (excitation) coupled to zero-dimensional (dispersionless) bosons through two
different nonlocal coupling mechanisms. Namely, below a critical value of the effective excitation-boson
coupling strength, the exact ground state of this model is the zero-quasimomentum Bloch state of a bare
(i.e., completely undressed) excitation. It is demonstrated here how this last property of the lattice model
under consideration can be exploited for a fast, deterministic preparation of multipartite W states in a
readily realizable system of inductively coupled superconducting qubits and microwave resonators.
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Sophisticated quantum-state engineering [1,2] is a pre-
requisite for the development of next-generation quantum
technologies [3,4]. In this context, tantalizing progress was
made in recent years by utilizing diverse physical platforms
[5–7]. In particular, owing to their continuously improving
scalability and coherence properties, superconducting (SC)
circuits [8–11] and, among them, circuit-QED systems
[12,13], allow accurate preparation of various quantum
states of SC qubits and photons alike [14].
Themost prominent classes of entangledmany-qubit states

are maximally entangled Greenberger-Horne-Zeilinger
(GHZ) [15] and W states [16]. An N-qubit W state is the
equal superposition of states with exactly one qubit in its “up”
state, the remaining ones being in their “down” states. In
particular, it is known that aW state and its GHZ counterpart
cannot be transformed into each other via local operations and
classical communication [17]. W states are also extremely
robust with respect to particle loss, remaining entangled even
if any N − 2 parties lose the information about their particle
[18]. They lend themselves to applications in quantum-
information protocols [5,19–21], which motivates their
preparation in various systems [22–28].
This Letter establishes a connection between a one-

dimensional (1D) lattice model describing a nonlocal
interaction of a spinless-fermion excitation with dispersion-
less bosons and multipartiteW states. Its point of departure
is the notion that in one of the relevant regimes this model
—which includes excitation-boson (e-b) couplings of
Peierls and breathing-mode types—has an unconventional
ground state. Namely, below a critical value of the effective
e-b coupling strength, its ground state is the zero-quasi-
momentum Bloch state of a bare excitation. It is shown here
how this property of the model under consideration can be
exploited for a fast, deterministic preparation of N-qubitW
states in an array of inductively coupled SC qubits and
resonators, an analog simulator of this model [29].

The state-preparation protocol proposed here, based on
microwave pumping, allows one to obtain multipartite W
states within time frames 3 orders of magnitudes shorter
than the currently achievable coherence times of SC qubits.
Unlike the situation in quantum-state control, where typical
preparation times scale unfavorably with the system size,
here they do not depend on the number of qubits at all.
What makes this protocol particularly robust is the fact that
its target state is the ground state of the system in a
parametrically large window of values of its main exper-
imental knob—an external dc flux.
Model and its ground state.—The 1D lattice model

under consideration describes a single spinless-fermion
excitation interacting with dispersionless bosons through
two different nonlocal coupling mechanisms. The non-
interacting part of its total Hamiltonian includes the
excitation kinetic-energy and free-boson terms

H0 ¼ −te
X

n

ðc†nþ1cn þ H:c:Þ þ ℏωb

X

n

b†nbn: ð1Þ

Here c†n (cn) creates (destroys) an excitation at site n
(n ¼ 1;…; N), b†n (bn) a boson with frequency ωb at the
same site, while te is the excitation hopping amplitude. The
interacting (e-b) part is given by

He-b ¼ gℏωb

X

n

½c†ncnðb†n−1 þ bn−1 − b†nþ1 − bnþ1Þ

þ ðc†nþ1cn þ H:c:Þðb†nþ1 þ bnþ1 − b†n − bnÞ�; ð2Þ

where g is the dimensionless e-b coupling strength. The first
term on the right-hand side (rhs) of the last equation captures
the antisymmetric coupling of the excitation density at site n
with the local boson displacements on the neighboring sites
n� 1 (breathing-mode-type coupling) [30]. The second
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term accounts for the linear dependence of the effective
excitation-hopping amplitude between sites n and nþ 1 on
the respective boson displacements (Peierls-type coupling)
[31–33].
The coupling Hamiltonian He-b can be recast in the

generic momentum-space form

He-b ¼
1ffiffiffiffi
N

p
X

k;q

γe-bðk; qÞc†kþqckðb†−q þ bqÞ: ð3Þ

Its corresponding e-b vertex function depends on both the
excitation and boson quasimomenta (k and q, respectively,
here expressed in units of the inverse lattice period) and is
given by

γe-bðk; qÞ ¼ 2igℏωb½sin kþ sin q − sinðkþ qÞ�: ð4Þ

The ground state ofH ¼ H0 þHe-b undergoes a sharp level-
crossing transition [34] at a critical value λce-b ∼ 1 [cf. Fig. 2]
of the effective coupling strength λe-b ≡ 2g2ℏωb=te. For
λe-b < λce-b the ground state is the K ¼ 0 eigenvalue of
the total quasimomentum operator Ktot ¼

P
k kc

†
kckþP

q qb
†
qbq. For λe-b ≥ λce-b, on the other hand, the ground

state is twofold degenerate and corresponds to K ¼
�Kgs (Kgs ≠ 0).
A ground state with K ¼ 0 is by no means unusual—in

fact, an overwhelming majority of coupled e-b models have
such ground states. Yet, the model at hand has the peculiar
property that its K ¼ 0 ground state for λe-b < λce-b is the
k ¼ 0bare-excitationBloch state jΨk¼0i≡ c†k¼0j0ie ⊗ j0ib,
where j0ie and j0ib are the excitation and boson vacuum
states. In what follows, it will first be demonstrated explicitly
that jΨk¼0i is an exact eigenstate ofH for an arbitrary valueof
λe-b. It will subsequently be shown numerically (see Fig. 2
below) that for λe-b < λce-b this state is the ground state ofH.
Given that jΨk¼0i is an eigenstate of H0, to prove that it

is an eigenstate of the total Hamiltonian H it suffices to
show that it is also an eigenstate of He-b. Indeed, by acting
with He-b [cf. Eq. (3)] on this state and making use of the
fact that ckc

†
0j0ie ≡ δk;0j0ie, one obtains

He-bjΨk¼0i¼
1ffiffiffiffi
N

p
X

q

γe-bðk¼ 0;qÞc†qj0ie ⊗ b†−qj0ib: ð5Þ

Because here γe-bðk ¼ 0; qÞ ¼ 0 for an arbitrary q
[cf. Eq. (4)], each term in the sum on the rhs of Eq. (5)
vanishes, implying that He-bjΨk¼0i ¼ 0. Therefore, jΨk¼0i
is an eigenstate of He-b (for an arbitrary λe-b), the
corresponding eigenvalue being equal to zero. This con-
cludes the proof that jΨk¼0i is an exact eigenstate of H.
Qubit-resonator system.—The analog simulator of the

model under consideration [see Fig. 1(a)] consists of SC
qubits (Qn) with the energy splitting εz, microwave reso-
nators (Rn) with the photon frequency ωc, and coupler

circuits (Bn) [35], which mediate both qubit-qubit and
qubit-resonator interactions in this system. The simulator
can be realized with transmons [12] (Es

J=E
s
C ∼ 100,

where Es
C and Es

J are the single-qubit charging and
Josephson energies) or gatemons [36] (Es

J=E
s
C ∼ 25). Its

nth repeating unit is described by the free Hamiltonian
H0

n ¼ ðεz=2Þσzn þ ℏωcb
†
nbn, where the pseudospin-1=2

operators σn represent qubit n and the bosonic operators
(bn; b

†
n) photons in the nth resonator.

The upper and lower loops of Bn are threaded by
magnetic fluxes ϕu

n and ϕl
n, respectively [both are expressed

in units of Φ0=2π, where Φ0 ≡ hc=ð2eÞ is the flux
quantum]. In particular, the upper loop is subject to ac
driving with the flux π cosðω0tÞ. The other contribution to
ϕu
n originates from the modes of resonators n and nþ 1 and

is given by ϕn;res ¼ δθ½ðbnþ1 þ b†nþ1Þ − ðbn þ b†nÞ�, where
δθ ¼ ½2eAeff=ðℏd0cÞ� × ðℏωc=C0Þ1=2, with Aeff being the
effective coupling area, C0 the resonator capacitance, and
d0 the effective spacing in the resonator [37]. Therefore,
unlike the much more common capacitive coupling [38],
the qubit-resonator coupling in the system at hand is
inductive [11]. Similarly, ϕl

n includes an ac contribution,
given by −ðπ=2Þ cosðω0tÞ, and a dc part ϕdc, the main
experimental knob in this system.
The Josephson energy of Bn is given by HJ

n ¼
−
P

3
i¼1 E

i
J cosφ

i
n, with φi

n being the respective phase drops
on the three Josephson junctions within Bn and Ei

J their
energies; it is henceforth assumed that E1

J ¼ E2
J ≡ EJ and

(a)

(b)

FIG. 1. (a) Schematic of the qubit-resonator system, whose nth
repeating unit (indicated by the dashed rectangle) comprises SC
qubitQn, resonatorRn, and coupler circuitBn. The fluxes from the
resonator modes n and nþ 1 thread the upper loops of the coupler
circuit Bn, effectively giving rise to an indirect inductive qubit-
resonator coupling. (b) Pictorial illustration of the effective lattice
model of the system,with the excitation hopping amplitude t0ðϕdcÞ
and each lattice site hosting dispersionless bosons with the
frequency δω ¼ ωc − ω0.
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E3
J ¼ EJb ≠ EJ. Using the flux-quantization rules [9], the

total Josephson energy
P

n H
J
n can be expressed in terms of

the gauge-invariant phase variables φn of SC islands of
different qubits. The latter enter this energy through terms
of the type cosðφn − φnþ1Þ, which in the regime of interest
for transmons and gatemons (Es

J ≫ Es
C) can be recast

(up to an additive constant) as δφ2
0½σþn σ−nþ1 þ σ−nσ

þ
nþ1 −

ðσzn þ σznþ1Þ=2�, where δφ2
0 ≡ ð2Es

C=E
s
JÞ1=2 [38].

Further analysis is carried out in the rotating frame
of the drive, where δω≡ ωc − ω0 is the effective boson
frequency and the Josephson coupling term becomes time
dependent. This time dependence can, however, be dis-
regarded due to its rapidly oscillating character, in line
with the rotating-wave approximation (RWA). The remain-
ing part of HJ

n can succinctly be written as H̄J
n ¼

−EJ
nðϕdc;ϕn;resÞ cosðφn − φnþ1Þ, where

EJ
n ¼ EJbð1þ cosϕdcÞ − EJJ1ðπ=2Þϕn;res; ð6Þ

and JmðxÞ are Bessel functions of the first kind whose
presence in this expression stems from the use of the
Jacobi-Anger expansion [39] in conjunction with the RWA.
In what follows, without significant loss of generality EJb is
chosen to be given by 2EJJ0ðπ=2Þ.
The above expression for cosðφn − φnþ1Þ in terms of the

operators σn implies that the effective interaction between
adjacent qubits in this system is of XY type. Through the
flux ϕn;res, the interaction strength acquires a dependence
on the boson displacements un ∝ bn þ b†n whose form is
equivalent to that of the XY spin-Peierls model [40]. The
spinless-fermion–boson coupling that results from this
interaction via Jordan-Wigner (JW) transformation is non-
local in nature, in contrast to other examples of such
couplings in various solid-state systems [28,41].
Effective Hamiltonian and its ground states.—To show

that the effective system Hamiltonian consists of contribu-
tions akin to H0 and He-b [cf. Eqs. (1) and (2)], one
switches to the spinless-fermion representation using the
JW transformation. The latter reads σzn ¼ 2c†ncn − 1,

σþn ¼ 2c†neiπ
P

l<n
c†l cl , where the sum in the last exponent

defines the JW string [42]. In this representation, the
noninteracting part of the effective system Hamiltonian
comprises the excitation-hopping and free-photon
terms. [Note that c†ncn terms resulting from the σzn terms
in H0

n and HJ
n are largely immaterial for further discussion

as they only lead to a constant energy offset (band-center
energy).] It assumes the form of H0, with ωb → δω and
te → t0ðϕdcÞ≡ EJbδφ

2
0ð1þ cosϕdcÞ, the latter being the

effective ϕdc-dependent hopping amplitude [cf. Fig. 1(b)].
At the same time, the interacting part adopts the form of
He-b. In particular, via the JW transformation the Peierls
coupling term is obtained in a manner familiar from the XY
spin-Peierls model [40], while the breathing-mode term

originates from the σzn terms in the above expression
for cosðφn − φnþ1Þ.
The dimensionless coupling strength g is determined

by the system parameters through the relation gℏδω ¼
δφ2

0EJJ1ðπ=2Þδθ, while the ϕdc-dependent—thus in situ
tunable—effective coupling strength is given by

λe-bðϕdcÞ ¼ g
J1ðπ=2Þδθ

J0ðπ=2Þð1þ cosϕdcÞ
: ð7Þ

For a typical resonator δθ ∼ 3.5 × 10−3 [29]. In addition,
for δω it is pertinent to take δω=2π ¼ 200–300 MHz and
also choose EJ such that δφ2

0EJ=2πℏ ¼ 100 GHz.
The ground-state energy of the system, expressed in

units of Eu ≡ 10−3δφ2
0EJ, was evaluated through Lanczos-

type exact diagonalization [29,43] and illustrated (without
the constant-energy contribution) in Fig. 2. For λe-b ≥ λce-b,
the system has a polaronlike ground state (strongly boson-
dressed excitation), with its energy showing a rather weak
dependence on λe-b. On the other hand, for λe-b < λce-b, the
ground state corresponds to jΨk¼0i, i.e., a bare excitation
with k ¼ 0. Its energy Egs ¼ −2t0ðϕdcÞ is the minimum of
a 1D cosine-shaped dispersion. The energy separation of
this ground state from the first excited state exactly equals
ℏδω for any ϕdc below the critical value. This is consistent
with the fact that coupled e-b systems with dispersionless
bosons invariably have one-boson continua separated from
their ground states by the single-boson energy and in the
weak coupling regime typically feature only one bound
state below those continua [44].
W states and their preparation.—Bearing in mind that

JW strings act trivially on j0ie, so that c†nj0ie ≡ Sþn j0ie
(where Sn ≡ ℏσn=2), it holds that

c†kj0ie ¼ N−1=2
XN

n¼1

e−iknSþn j0ie: ð8Þ
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FIG. 2. Ground-state energy of the system with δω=2π ¼
300 MHz as a function of the effective coupling strength λe-b.
For λe-b < λce-b ≈ 0.72 (i.e., ϕdc < 0.972π) the ground state of the
system corresponds to a bare excitation, while for λe-b ≥ λce-b it
corresponds to a heavily dressed (polaronic) one.
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The last equation is equivalent to jΨki ¼ jWNðkÞi ⊗ j0ib,
where jWNðkÞi is a “twisted” N-qubit W state. Thus, bare-
excitation Bloch states coincide with generalized W states,
while, in particular, jΨk¼0i—the ground state of the system
at hand for λe-b < λce-b—corresponds to the ordinary
N-qubit W state

jWNi ¼
1ffiffiffiffi
N

p ðj10…0i þ j01…0i þ � � � þ j00…1iÞ: ð9Þ

In the following, a microwave-pumping-based protocol
for the preparation of an N-qubit W state is proposed
assuming that the system is initially in the vacuum state
j0i≡ j0ie ⊗ j0iph. The external driving required for this
purpose is assumed to be represented by the operator

ΩqdðtÞ ¼
ℏβðtÞffiffiffiffi

N
p

XN

n¼1

ðσþn e−iqdn þ σ−n eiqdnÞ; ð10Þ

where βðtÞ describes its time dependence and the factors
e�iqdn account for the possibility that flip operations on
different qubits are applied with a phase difference. It is
important to stress that the general form of driving in
Eq. (10) allows one to prepare—through different choices
of qd and βðtÞ—various states of the proposed system,
including its strongly boson-dressed ground states realized
when ϕdc is above the critical value.
The transition matrix element of the operator ΩqdðtÞ

between the initial state j0i and the target state jΨk¼0i≡
jWNi ⊗ j0iph evaluates to ℏβðtÞδqd;k¼0, which indicates
that the preparation of this particular target state requires
only a global driving field [i.e., qd ¼ 0 in Eq. (10)]. Thus,
in contrast to some other schemes for W-state preparation
[22], the present one does not require a local qubit control
[45,46]. By assuming that βðtÞ ¼ 2βp cosðωdtÞ, where ℏωd

is the energy difference between the two relevant states, in
the RWA these states are Rabi coupled with the effective
Rabi frequency βp [47,48]. Thus, starting from the state j0i,
the desired state N-qubit W state will be prepared within a
time interval of duration τprep ¼ πℏ=ð2βpÞ, which does not
depend on N.
Taking the pumping amplitude to be βp=ð2πℏÞ¼10MHz,

one finds τprep ≈ 25 ns, which is 3 orders of magnitude
shorter than typical coherence times of SC qubits (e.g., for
transmons T2 ∼ 20–100 μs [10]). Thus, the proposed pro-
tocol should not be affected by a loss of coherence in the
system. At the same time, the obtained τprep is sufficiently
long that a leakage outside of the computational subspace
of a single qubit can be neglected. Namely, due to the
multilevel character of SCqubits, a finite anharmonicityα≡
E12 − E01 (where Eij is the energy difference between qubit
states j and i) is required. In order to avoid such a leakage,
the minimal pulse duration of tp ∼ ℏ=jαj is necessary. For
transmons (α ∼ −200 MHz), even a few-nanoseconds-long

pulse is frequency selective enough that such a leakage is
negligible [13]. The obtained τprep ∼ 25 ns suffices even in
the case of gatemons, whose typical anharmonicity is by a
factor of 2 smaller than that of transmons [49].
Importantly, the large energy separation ℏδω between

the target state and the lowest-lying excited state of the
system ensures that the proposed W-state preparation will
not be hampered by an inadvertent population of undesired
states. For instance, for δω=2π ¼ 200ð300Þ MHz, this
energy separation is equal to 2Euð3EuÞ, which represents
a significant fraction of the energy difference between the
initial and target states (cf. Fig. 2).
The proposed protocol is deterministic in nature and

generatesW-type entanglement of all the qubits in parallel.
Moreover, in contrast to the typical situation in quantum-
state control, where state-preparation times often scale
unfavorably with the system size, here τprep does not
depend on the system size at all. Finally, because they
represent ground states of the system, multipartite W states
prepared by this protocol can be expected to be extremely
robust.
Besides allowing W-state preparation, the proposed

system features an XY-type qubit-qubit interaction, which
opens the possibility for a universal quantum computation
[50,51]. Because the strength of this interaction depends
dynamically on the boson degrees of freedom (photons),
this system bears a formal similarity to certain trapped-ion
systems in which the role of bosons is played by collective
motional modes (phonons) [52]. Compared to its trapped-
ion counterparts, this system has an added advantage that it
merely involves dispersionless bosons of one single fre-
quency, which circumvents the spectral crowding problem
resulting from the quasicontinuous character of phonon
spectra in large trapped-ion chains [53].
Robustness to losses and feasibility.—It is pertinent to

briefly address the robustness of the system at hand to
possible deleterious effects of losses. To this end, it is
worthwhile to first note that qubit-state flips and displace-
ments of the resonator modes are the two leading sources of
decoherence in this system. In addition to the very long T2

times of transmon (gatemon) qubits, the damping time
of microwave photons in coplanar waveguide resonators
can reach the same order of magnitude as T2, with the
corresponding quality factor being larger than 107 [54].
Additionally, the relevant excitation and photon energy
scales in this system (δω, gδω, t0=ℏ), expressed in
frequency units, are all of the order of several
2π × 100 MHz. Thus, they far exceed the decoherence
rates whose state-of-the-art values in these types of systems
are γ ∼ 0.01 MHz [10]. Finally, in this system, thermal
excitations—which at temperatures typical for such
SC-qubit setups (T ∼ 100 mK) have characteristic energies
of a few gigahertz—can be safely neglected. Therefore, the
loss mechanisms do not pose obstacles to realizing the
proposed system.
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Conclusions.—The present Letter proposes a scheme
for a fast, deterministic creation of a large-scale W-type
entanglement [55] in a system of inductively coupled super-
conducting qubits and microwave resonators. The mecha-
nism behind this scalable entanglement resource—which
allows one to engineer W states with the preparation times
independent of the system size—stems from the unconven-
tional ground-state properties of a one-dimensional model
describing a nonlocal coupling of a spinless fermion to zero-
dimensional bosons. The feasibility and robustness of the
underlying state-preparation protocol—which only requires
a global driving field—is demonstrated with realistic system
parameters.
This study can be viewed as being complementary to

that of Ref. [22], where the preparation of W states of
photons—rather than qubits—was proposed. The common
denominator of these two proposals is that they both rely
on superconducting systems and an in situ tunability of a
hopping amplitude, albeit being based on completely
different physical mechanisms. These schemes are far more
scalable than the conventional ones in which resonator-
mediated qubit-qubit interactions are utilized to control-
lably entangle multiple qubits; such an approach was
recently used to prepare a GHZ state of 10 superconducting
qubits [7]—the largest entanglement demonstrated so far in
solid-state architectures. Thus, the need to demonstrate the
envisioned W-state preparation is compelling.
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