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In this Letter, we introduce a “coherence equality” that is satisfied by any classical communication—i.e.,
conveyed by a localized carrier traveling along well defined directions. In contrast, this equality is violated
when the carrier is prepared in coherent quantum superposition of communication directions. This is
phrased in terms of the success probability of a certain communication task, which is always constant and
equal to 1=2 in the classical case. On the other hand, we develop two simple quantum schemes that deviate
systematically from the classical value, thus, violating the coherence equality. Such a violation can also
be exploited as an operational way to witness spatial quantum superpositions without requiring us to
recombine the modes in a standard interferometer, but only by means of spatially separated local
measurements.
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Introduction.—Quantum superposition principle states
that an arbitrary linear combination of two physical states is
still a valid quantum state. Such a principle lies at the core
of genuine quantum behaviors. In fact, it even supervenes
quantum entanglement, which can be regarded as a
particular state of superposition that combines two or more
joint degrees of freedom. Since the early days of quantum
theory, physicists have been using the effect of quantum
superposition (or coherence) as the foremost observable
evidence to discriminate between the classical and the
quantum domains. It has also been a prime conceptual tool
for testing the limits of quantum mechanics, like in the
notorious Schrödinger’s cat gedanken experiment [1].
In more recent years, effects based on coherence played

a central role in the revolutions of quantum information
and quantum technologies, allowing a plethora of novel
achievements that are fundamentally unattainable in
classical scenarios, such as secure communication [2],
and algorithms with an exponential advantage over their
classical counterpart [3,4]. Moreover, it was shown that
quantum superposition can be used as a resource for
quantum communication [5–11] and can lead to novel
effects such as the enhancement of a classical channel
capacity [9], secure anonymous communication [10], or the
doubling of the bandwidth of a classical channel [11].
However, it is well known that the direct observation of

a quantum superposition of distinct states is not possible.
For example, in the celebrated double-slit experiment, if
one detects the presence of the particle at either of the two
slits, no quantum effects are manifested, and even micro-
scopic particles (e.g., electrons) resemble classical bullets.
Accordingly, witnessing a quantum superposition requires

a particular type of indirect observation, usually achieved by
spatially separating the wave function before recombining
them in an interference experiment. Consider, for instance,
the aforementioned double-slit experiment, where each slit
has the option to be open or closed, labeled by “0” and “1,”
respectively. This leads to four possible configurations: “00,”
“01,” “10,” or “11.” where the position of the digit indicates
the first or the second slit, respectively. The “nonclassicality,”
i.e., the presence of a quantum superposition, can then be
measured by the interference term [12]

I ≔
X1
i;j¼0

ð−1Þi⊕jpij; ð1Þ

where pij is the conditional probability for finding the
particle on the observation screen, given the configuration ij.
In a classical scenario, I ¼ 0 always, whereas a nonzero
value would represent a witness of a coherent superposition.
This is exactly the same condition one finds in the case of a
Mach-Zehnder interferometer (the simplest instantiation
of the double-slit experiment), where a single particle is
separated into two paths by a beam splitter, and interference
fringes appear at the detector when I ≠ 0. However, as in
every other interferometric experiment, it is necessary to
recombine the paths at a second beam-splitter (and to
introduce a relative phase between the two paths) to observe
the interference.
In this Letter, we propose an operational way to witness a

superposition using only local measurements conducted at
separated locations, without the necessity of recombining
the paths as in a standard interferometer. To achieve this,
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we derive a “coherence equality,” which is satisfied by any
classical resource, but that can be violated by systems that
exhibit coherence (i.e., in quantum superposition). We will
phrase the problem using the modern language of infor-
mation and communication tasks that present a systematic
difference in the probabilities of success with their classical
counterpart, when quantum resources are employed.
Coherence equality and interference.—In this section,

we derive a coherence equality, whose violation can be
regarded as an operational procedure to witness quantum
superposition without the use of a standard interferometer.
That is, without the necessity of recombining the two
arms to detect an interference pattern (thus, effectively
using a setup which is only half of a Mach-Zehnder
interferometer).
Let us start by considering a scenario like the one

depicted in Fig. 1. A source S produces a single information
carrier (e.g., a single particle) in order to convey a piece of
information to Alice (A) or Bob (B), who are separated at
two different locations. (As we shall see, even if commu-
nication is allowed between the two agents—contrarily
to nonlocal scenarios wherein spacelike separation is
enforced—the result would still hold unchanged.)
The information to be communicated is a bit which is

encoded along either of the paths traveled by the informa-
tion carrier: x ∈ f0; 1g on the branch leading to Alice, and
y ∈ f0; 1g on the branch leading to Bob. The operation of
encoding consists in selecting one of the two configura-
tions, open or closed, of a movable “blocker” (i.e., an
ideally impenetrable barrier) on each of the two channels

connecting S to A and S to B, respectively. We denote by
x ¼ 0 (x ¼ 1) the configurations in which the blocker is
open (closed) along the channel S − A; in the same fashion,
the input y ¼ 0 (y ¼ 1) means that the blocker in channel
S − B is open (closed). No information can reach the
receiver if a blocker is placed in the respective path (i.e.,
if x ¼ 1 and/or y ¼ 1).
The parties A and B then (potentially) receive the

information carrier, and they perform local measurements
whose binary outputs are labeled by a ∈ f0; 1g and
b ∈ f0; 1g, respectively. Moreover, A and B are allowed
to share some resources such as classical shared random-
ness, entanglement, or coherence. Since, in the classical
case, the information carrier is a well-localized object at
any instant in time (which means that the particle will take
only one definite path among S − A and S − B) the inputs
x and y can causally influence the outputs a and b in two
mutually exclusive, possible ways (see Fig. 2). Therefore,
the joint probability distribution of all the outputs, given the
inputs, is a classical mixture of the distributions corre-
sponding to one-way signaling distributions (either S
communicates to A, or to B)

pðabjxyÞ ¼ λS−ApS−AðabjxÞ þ λS−BpS−BðabjyÞ; ð2Þ

where λS−A and λS−B are non-negative constants that add up
to the unity. To measure interference effects, in analogy
with Eq. (1), we define

Iab ¼
X1
x;y¼0

ð−1Þx⊕ypðabjxyÞ: ð3Þ

It immediately follows from (2) that, for classical systems,

IClassab ¼ 0: ð4Þ

We call the above expression coherence equality because any
deviation from the value 0 would imply that the information
carrier is a nonclassical object that exhibits coherence. Note
that communication between the parties is, in principle,
allowed, since the derivation of Eq. (4) is independent of
the separation between A and B (which could, indeed, be
replaced by a single agent). However, for the argument
discussed here, we maintain the parties separated at two

FIG. 1. Scheme of the coherence without re-interference
communication game. A source S produces a single “information
carrier” which can be sent to two parties, Alice and Bob. The
latter can share some resources (represented by the blue wavy
line). A and B are asked by two referees to output one bit each
(a and b, respectively) to fulfill a certain task. Movable blockers
are situated along the channels S − A and S − B and their
configurations, open or closed, function as encoded inputs, x
on Alice’s side, and y on Bob’s. Quantum mechanics allows a
violation of a fundamental classical bound to the probability of
success (see main text).

FIG. 2. Causal diagram. Classically, a single information carrier
can convey information only in one of two depicted scenarios.
Either x or y influences a and b. The dashed arrows indicate that,
in principle, there could be communication between a and b.
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different locations, because it is our main aim to show that
spatially separated agents can certify the presence of
quantum coherence only by means of local operations
and classical communication, i.e., without closing a standard
interferometer. Moreover, such a two-party scenario finds
applications in cryptographic protocols [10,13].
“Coherence without re-interference” communication

game: Following a recent trend that aims at quantifying
the discrepancy between classical and quantum scenarios
by computing the success probability of quantum XOR
nonlocal games [14–16], we define the coherence without
re-interference game, that provides an operational pro-
cedure for demarcating the classical resources from the
quantum ones.
Again, consider the setup of Fig. 1, but in this case,

where two referees, RA and RB, encode inputs x and y
(randomly assigned with uniform distribution) by opening
or closing their blocker, as described above. The referees
challenge the parties A and B to return outputs a and b,
respectively, which ought to fulfill the following relation:

a ⊕ b ¼ x ⊕ y: ð5Þ

The easiest classical strategy for playing the game would
be for Alice and Bob to detect the presence of the particle at
their respective positions, each outputting 1 if a particle is
detected or 0, otherwise. From the distribution in (2), it is
trivial to see that the (nonvanishing) probabilities read

pð10j00Þ ¼ λS−A; pð01j00Þ ¼ λS−B;

pð10j01Þ ¼ λS−A; pð00j01Þ ¼ λS−B;

pð00j10Þ ¼ λS−A; pð01j10Þ ¼ λS−B;

pð00j11Þ ¼ 1:

It follows that the probability of fulfilling relation (5) is
given by Pwin ¼ 1=4ðλS−A þ λS−B þ 1Þ ¼ 1=2, which sat-
isfies the coherence equality Iab ¼ 0, as defined in Eq. (3),
is satisfied.
In general, the probability of success, Pwin, is given by

the following expression:

Pwin ¼
1

4
½pð00j00Þ þ pð00j11Þ þ pð01j01Þ þ pð01j10Þ

þ pð10j01Þ þ pð10j10Þ þ pð11j00Þ þ pð11j11Þ�

¼ 1

2
þ 1

4
ðI00 þ I11Þ: ð6Þ

Since IClassab ¼ 0 for all a and b, we get PClass
win ¼ 1

2
. This

means that, using only classical resources, A and B will
always achieve the same probability of success of 1=2,
regardless of the strategy they choose.
In practice, the probability of deviation of the relative

frequency from 1=2 is exponentially suppressed with the

number of experimental trials for any possible classical
scenario (see Supplemental Material [17]).
Quantum task: Communication in quantum superposi-

tion: First example. Now, let us consider the analogous
quantum scenario. Let the state of the particle be an equal-
weighted superposition of directions of communication,
i.e., jψiS ¼ ð1= ffiffiffi

2
p ÞðjAiS þ jBiSÞ. The states jAi and jBi

are taken to mean that the particle is in the path leading
towards Alice or Bob, respectively, whereas the subscript S
indicates that this particle was created at the source. Now,
consider that the internal mechanism of the measuring
devices located at the two separate positions, A and B, have
some preshared coherence. Namely, an ancillary identical
(i.e., indistinguishable) particle, previously prepared in the
superposition state jψiM ¼ ð1= ffiffiffi

2
p ÞðjAiM þ jBiMÞ, where

the subscript M refers to the measurement device. The
quantum particle produced in S travels from the source to A
and B and, after passing through the encoding ports, arrives
to the measurement devices where it gets measured
together with the particle M.
Consider a strategy where the players agree to output a

random bit each time they detect two or no particles at their
respective locations. This event occurs if both slits are open
(x ¼ y ¼ 0) with probability 1=2; if one slit is open and the
other is closed (x ⊕ y ¼ 1), it occurs with probability 3=4;
finally, for both slits closed (x ¼ y ¼ 1), it always occurs.
Overall, the player will output random bits in three quarters
of the runs and corresponds to the classical probability of
success of 1=2.
Now, let us consider the cases when one particle is

detected by Alice and the other by Bob, which would occur
in the other quarter of runs. Using the formalism of Fock
space, we introduce four ladder operators a†S=M and b†S=M,
which can be either fermionic or bosonic, to designate
the two different locations for each of the particles. For
instance, the joint state of the particles (before measure-
ment) for the case of both slits open (x ¼ y ¼ 0) is given by

1

2
ða†S þ b†SÞða†M þ b†MÞj0iASj0iAMj0iBSj0iBM: ð7Þ

Here, for example, j0iAS labels the vacuum state for the
source particle located at Alice’s side. Making the action of
the ladder operators on the vacuum states explicit allows us
to show the difference between fermionic and bosonic
statistics

j1iASj1iAMj0iBSj0iBM þ j1iASj0iAMj0iBSj1iBM
� j0iASj1iAMj1iBSj0iBM þ j0iASj0iAMj1iBSj1iBM;

where the � holds for bosons or fermions, respectively.
It is convenient to introduce the following “qubit” states

for A and B:
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j0iA ¼ j1iASj0iAM; j1iA ¼ j0iASj1iAM; ð8Þ

j0iB ¼ j1iBSj0iBM; j1iB ¼ j0iBSj1iBM: ð9Þ

These states constitute Alice’s and Bob’s qubits and can be
fully manipulated locally, e.g., by means of linear-optical
elements, such as beam splitters and phase shifters.
Formally, this means locally applying transformations of
the group SUð2Þ to these qubit states. To translate any
matrix u ∈ SUð2Þ in second quantization formalism, first,
one needs to identify its generator (Hamiltonian), i.e.,
u ¼ eiĥ, with ĥij being a 2 × 2 Hermitian matrix. The
corresponding Hamiltonian, in the Fock space representa-
tion, reads Ĥ ¼ P

ij hija
†
i aj. This, in turn, defines the

generic transformation of SUð2Þ in Fock space as U ¼ eiĤ.
The transformationU preserves the qubit subspace spanned
by fj0iA; j1iAg, and its action simply reduces to the action
of u ∈ SUð2Þ [19]. The same holds for the operators on
Bob’s side. Note, also, that these operators take the same
form for both fermions and bosons.
The players will then perform the measurements within

these qubit (sub)spaces, i.e., spanned by βA ¼ fj0iA; j1iAg
and βB ¼ fj0iB; j1iBg. Since we are interested only in
cases for which the measurement reveals one particle per
party, this situation occurs only when x ¼ y ¼ 0 or
x ⊕ y ¼ 1, and we label the three postselected states by
jψxyi. A simple calculation shows

jψ00i ¼
1ffiffiffi
2

p ðj0iAj1iB � j1iAj0iBÞ; ð10Þ

jψ01i ¼j0iAj1iB; ð11Þ

jψ10i ¼j1iAj0iB; ð12Þ

where the � refers to bosons or fermions, respectively.
Now, we label local measurement projectors as ΠA=B

a=b ¼
1
2
½ð1þ ð−1Þa=bσA=B� for A and B, respectively. Here,

σ2A=B ¼ 1 are binary observables. These operators reside
in the qubit subspaces spanned by βA and βB. To implement
this measurement, one can locally interfere the “M” and
“S” particles at a beam splitter for each of the two locations.
Notice, however, that the particles on Bob’s and Alice’s
sides will never be brought together again.
Let us analyze the probability of success case by case.

For x ¼ y ¼ 0, in half of the cases, A and B achieve 1=2
(this accounts for the situations where local detectors
register two or no particles). In the other two cases, the
probability of success is given by hψ00jΠA

0 ⊗ ΠB
0 þ ΠA

1 ⊗
ΠB

1 jψ00i. Hence, one has to average these two possibilities

pð00j00Þ þ pð11j00Þ

¼ 1

4
þ 1

2
hψ00jΠA

0 ⊗ ΠB
0 þ ΠA

1 ⊗ ΠB
1 jψ00i

¼ 1

2
þ 1

4
hψ00jσA ⊗ σBjψ00i: ð13Þ

Similarly, for x ¼ 0 and y ¼ 1, the measurement reveals
one particle per party in 1=4 of the cases only (in the other
3=4 of the cases, A and B achieve the success of 1=2 by
outputting random results), thus, we have

pð01j01Þ þ pð10j01Þ

¼ 3

8
þ 1

4
hψ01jΠA

0 ⊗ ΠB
1 þ ΠA

1 ⊗ ΠB
0 jψ01i

¼ 1

2
−
1

8
hψ01jσA ⊗ σBjψ01i: ð14Þ

In complete analogy, for x ¼ 1 and y ¼ 0, we get

pð01j10Þ þ pð10j10Þ

¼ 3

8
þ 1

4
hψ10jΠA

0 ⊗ ΠB
1 þ ΠA

1 ⊗ ΠB
0 jψ10i

¼ 1

2
−
1

8
hψ10jσA ⊗ σBjψ10i: ð15Þ

Finally, for the case x ¼ y ¼ 1, A and B output
random bits always, thus, the probability of success is
pð00j11Þ þ pð11j11Þ ¼ 1=2. Putting everything together
we have

Pwin ¼
1

2
� 1

32
ðh0jσAj1ih1jσBj0i þ h1jσAj0ih0jσBj1iÞ:

ð16Þ

The maximal value is achieved for σA ¼ �σB ¼ σx,
where � again refers to bosons or fermions, respectively.
Therefore, the optimal quantum value is PQ1

win ¼ 9=16. We
can also explicitly calculate all the coherence equalities, as
defined in Eq. (3) that, for this choice of measurements,
give a maximal violation of Iab ¼ f½ð−1Þa⊕b�=8g.
Second example. Now, we introduce an alternative

example that, while not making use of preshared coherence,
requires violating the particle-number conservation,
thereby making this example fundamentally unattainable
for fermions [20]. Suppose that the initial state of the
particles produced by the source is (in second quantization)
jψi ¼ s0j1iAj0iB þ s1j0iAj1iB, with js0j2 þ js1j2 ¼ 1.
Here, j0iA and j1iA are the states associated with, respec-
tively, zero or one particle in mode A (i.e., in the path
S − A). The analogous notation holds for mode B.
The associated two-mode density matrix is given by
ρAB ¼ jψihψ j. The operation associated to blocking the
path is the “blocking” operator B [21]. When a system in
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mode A, prepared in some state ρA, arrives at the blocker, it
undergoes the operation BAðρAÞ ¼ j0ih0jA, for an arbitrary
input state ρA. Adapted to the present scenario, we have
the following blocking operators for modes A and B,
respectively,

BAðρABÞ ¼ j0ih0jA ⊗ ρB;

BBðρABÞ ¼ ρA ⊗ j0ih0jB; ð17Þ

where ρA ¼ TrBðρABÞ and ρB ¼ TrAðρABÞ are the reduced
density matrices of the two subsystems B and A, respec-
tively. If no blocker is introduced, then the corresponding
state does not undergo any influence, thus, the identity
transformation is applied.
The introduction of the blockers, or otherwise, trans-

forms the input state ρAB into the state ρxy, which now
encodes the inputs x and y (as defined above) by the
transformation

ρxy ¼ ðBAÞxðBBÞyρAB: ð18Þ

Hence, one has ρ00 ¼ ρAB, ρ01 ¼ ρA ⊗ j0ih0jB, ρ10 ¼ j0i
h0jA ⊗ ρB, and ρ11 ¼ j0ih0jA ⊗ j0ih0jB. Let A and B
perform binary measurements in their respective Fock
spaces, defined by ΠA=B

a=b ¼ 1
2
½1þ ð−1Þa=bσA=B�. Here,

σA=B are single-qubit operators that reside in local Fock
spaces spanned by the vacuum j0iA=B and single-particle
state j1iA=B. The conditional probabilities are given by
pðabjxyÞ ¼ Tr½ρxyΠA

a ⊗ ΠB
b � and

Iab ¼ Tr

�
ΠA

a ⊗ ΠB
b

X1
xy¼0

ð−1Þx⊕yρxy

�
ð19Þ

¼ s0s�1h0jΠA
a j1ih1jΠB

b j0i þ H:c: ð20Þ

The probability of success (6) evaluates to

Pwin ¼
1

2
þ 1

8
ðs0s�1h0jσAj1ih1jσBj0i þ H:c:Þ: ð21Þ

The maximum is achieved for σA ¼ σB ¼ σx and
s0 ¼ s1 ¼ 1=

ffiffiffi
2

p
, for which we find

PQ2

win ¼
5

8
: ð22Þ

One can then evaluate Iab ¼ f½ð−1Þa⊕b�=4g, which clearly
violates all four coherence equalities (4).
Note that, in this example, the implementations of

measurements ΠA=B
a=b requires the readout in superposition

of the vacuum state and a single-particle excitation, thus,
requiring the violation of the particle number conservation.
This makes the proposal demanding for bosonic particles,

whereas the parity superselection rule completely forbids
this for fermions [20,22]. Nevertheless, such measurements
are, in principle, physical for bosonic particles, and have, in
fact, been implemented for single photons by transferring
the photonic excitations to atoms [23–25].
Conclusions.—In this Letter, we have investigated the

possibility of witnessing a quantum superposition of
communication, by means of probabilistic correlations
between distant parties. Remarkably, this procedure does
not require us to recombine the beams to unambiguously
detect a superposition state. Phrasing this problem in terms
of a communication game, we have derived a coherence
equality that is satisfied by any classical communication
(i.e., when the information carrier is a well-localized
particle). On the contrary, we have provided two concrete
examples—experimentally implementable—where the use
of quantum resources for communication allows a violation
of the coherence equality and, therefore, certifies the
presence of quantum superposition. Remarkably, this is
done by local measurements only.
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