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We study the dynamics of a contractile active nematic fluid subjected to a Poiseuille flow. In a quasi-1D
geometry, we find that the linear rheology of this material is reminiscent of Darcy’s law in complex fluids,
with a pluglike flow decaying to zero over a well-defined “permeation” length. As a result, the viscosity
increases with size, but never diverges, thereby evading the yield stress predicted by previous theories. We
find strong shear thinning controlled by an active Ericksen number quantifying the ratio between external
pressure difference and internal active stresses. In 2D, the increase of linear regime viscosity with size only
persists up to a critical length beyond which we observe active turbulent patterns, with very low apparent
viscosity. The ratio between the critical and permeation length determining the stability of the Darcy regime
can be made indefinitely large by varying the flow aligning parameter or magnitude of nematic order.
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Active gels provide a generic and universal model to
understand the physics of active materials exerting non-
thermal forces on the environment [1,2]. Solutions of
biopolymers, such as actin or microtubules, cross-linked
by molecular motors, such as myosin or kinesin, are well
described by the active gel paradigm [3,4], and so are
suspensions of self-motile microorganisms [5,6]. According
to the active gel theory, these systems can be modeled as a
collection of force dipoles exerted by the active particles (the
motors or the microorganisms in the previous examples)
on the surrounding fluid [1,2]. Extensile active gels are those
in which particles act on the surroundings via outward-
pointing dipolar forces; contractile ones exert inward-
pointing forces.
Theory [7–14] and experiments [15–17] have shown that

active gels possess many intriguing and counterintuitive
flow and rheological properties, making them good candi-
dates for new soft functional materials. Extensile fluids flow
more easily due to activity, and can behave as “superfluids”
with near-zero viscosity [7–11,16,17]. Contractile gels flow
instead more slowly due to activity [7,10,15]. Theory
suggests that the rheology of contractile active gels is
reminiscent of that of glasses: These systems should be
shear thinning and possess a yield stress when in the nematic
phase [12]. While numerical simulations of contractile
active gels in the isotropic phase showed that their viscosity
tends to infinity as the system approaches the spinodal point
[8], whether or not the system should have a yield stress deep
in the nematic phase is currently unclear. Here, the com-
plication is that splay fluctuations are known to generically
destroy nematic order in a large enough contractile system
[18,19], rendering calculations based on spatially homo-
geneous states inconclusive.
To address the yield stress issue, and to provide a

complete theory for active contractile rheology, here we

combine computer simulations and analytics to study con-
tractile nematics subjected to a pressure-driven (Poiseuille)
flow [Fig. 1(a)]. We define an apparent viscosity, as in
experiments, by analyzing the magnitude of the throughput
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FIG. 1. (a) A schematic diagram of the channel with walls at the
boundaries in the z direction and periodic boundaries in x and y.
A constant body force f is applied in the positive y direction. In
our quasi-1D geometry Q and u only depend on z; in 2D
simulations, they depend on y and z. (b) Numerical results
showing the y component of the velocity (scaled by system size)
against z for systems of varying channel width. The permeation
length λp has been determined by fitting these curves to the
velocity field in Eq. (9), thus showing that λp (represented by the
dotted vertical line) is independent of Lz. The inset shows a plot
of η=η0 in the linear regime of contractile active liquid crystals in
one dimension against the channel width Lz.
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flow as a function of the forcing. Focusing initially on
systems that do not flow spontaneously and on a “quasi-1D”
geometry (in which order parameter and flow field vary in
only one direction), we find no yield stress behavior, but
instead a viscosity which—in the linear regime—increases
with sample size. The phenomenology of the associated
flow, in particular the flow velocity profile and high apparent
viscosity, is strikingly similar to permeation in liquid
crystals [20–23] and to Darcy’s flow [24], but occurs here
in the absence of any substrate friction. Our theory shows
that this behavior arises because active forces create a flow
opposing that imposed by the pressure gradient, in a way
which resembles friction qualitatively resulting in pluglike
flow. In 2D or 3D systems, the Darcy-like flow persists only
up to a critical length, beyond which we find chaotic
behavior, or “active turbulence” [5,6,25–28], with much
lower viscosity. Importantly, we find that by changing the
flow alignment angle and the amplitude of the nematic order
parameter, the range of length scales over which the Darcy-
like regime is stable can be increased without bound. This
happens in particular when the amplitude of the nematic
order parameter approaches zero [29].
To describe the equilibrium behavior of our active

nematic fluid, we used a particular Landau–de Gennes
free energy F with density f [30], which has two
contributions. The first is a bulk term, which describes
the isotropic-nematic transition:

f1¼
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The second term quantifies the cost of elastic distortions in
the nematic orientation; in the one elastic constant approxi-
mation [31], it reads

f2 ¼
K
2
ð∂αQβγÞ2: ð2Þ

In Eqs. (1) and (2), A0 is the bulk energy scale, γ is a
temperaturelike parameter with an isotropic-to-nematic
transition at γ ¼ 2.7, K is the elastic constant, and Q is
the tensorial order parameter measuring orientational
order [31]. We use the repeated index summation conven-
tion throughout, with Greek indices denoting Cartesian
components.
The equation of motion for Q is

� ∂
∂tþ uγ∂γ

�
Qαβ − SαβðQ;WÞ ¼ ΓHαβ; ð3Þ

where the first term on the left-hand side describes the
advection of rods by a fluid with velocity u. The second
term is a tensor that couples the rotation and stretching of
the liquid crystals to the flow and has the form

SðQ;WÞ ¼ ðξDþΩÞðQþ I=3Þ þ ðQþ I=3ÞðξD −ΩÞ
− 2ξðQþ I=3ÞTrðQWÞ; ð4Þ

where D ¼ ðW þWTÞ=2 and Ω ¼ ðW −WTÞ=2 are the
symmetric and antisymmetric parts of the velocity gradient
tensor Wαβ ¼ ∂βuα, and I is the identity matrix. The
quantity ξ is the flow aligning parameter, which will play
an important role in this work. Finally, Γ is the rotational
diffusion constant, and the tensor H is the molecular
field, H ¼ −δF=δQþ ðI=3ÞTrðδF=δQÞ.
The evolution of the fluid velocity field u is described by

the Navier-Stokes equation,

ρð∂t þ uβ∂βÞuα ¼ fα þ η0∇2uα þ ∂βΠαβ; ð5Þ

where ρ is the fluid density, and fα is the externally applied
pressure gradient. The fluid is assumed to be incompress-
ible. The second term on the right-hand side describes the
viscous forces, where η0 is the background fluid viscosity,
and Παβ is the stress tensor [7,18,25],

Παβ ¼−P0δαβþ2ξ
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where the last term is the active stress. The activity ζ is
negative for contractile fluids, and positive for extensile
systems. For more details, see Ref. [32].
We begin by reporting lattice Boltzmann simulation

results for the linear rheology of contractile fluids under
Poiseuille flow (Fig. 1; see Ref. [33] for methods).
We consider a quasi-1D active nematic (where orientational
order and flow velocity only vary along z) confined
between two infinite parallel plates at z ¼ 0 and z ¼ Lz,
subject to a constant body force (magnitude f) along y. The
nematic order parameter Q is pinned at the plates to
Q0 ¼ qðŷ ŷ −I=3Þ, where the magnitude q of the order
parameter is determined byminimizing the bulk free-energy
density in Eq. (1), which gives q ¼ 1

4
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − 24=γ
p Þ. We

also impose no-slip boundary conditionsu ¼ 0 at the plates.
We define an apparent viscosity η ¼ η0M0=M in terms

of the throughput flow of the active nematic, with
M ¼ R Lz

0 dzvyðzÞ, and M0 the value for a Newtonian fluid
with viscosity η0 in a channel of the same width and subject
to the same body force. The velocity profiles in the steady
state are shown in Fig. 1(b) for different values of system
size Lz (and the same value of f). These correspond to the
linear regime, so that further decreasing f leads to no
changes in η. We find no sign of a yield stress. Notably,
though, we find pluglike flow for all Lz, with near-uniform
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velocity in the bulk of the channel, and all the shear
confined in a small region close to the wall [Fig. 1(b)]. An
analysis of the profiles in Fig. 1(b) shows that the
maximum velocity scales as Lz, whereas the length scale
over which vy drops to 0 (the “permeation length” λp) does
not vary appreciably with size.
To better understand these results, we linearize the steady

state equations of motion for our quasi-1D case to obtain

ΓKδQ00 þ x2v0 ¼ 0;

η0v00 − ζδQ0 − x2KδQ000 þ f ¼ 0; ð7Þ

where x2 ≡ ½2ξþ qðξ − 3Þ�=6 [33], whereas δQ ¼ δQyz
and v ¼ uy are the deviations of the order parameter tensor
and the flow field from their rest values (Q ¼ Q0 and
u ¼ 0) due to the body force f. This set of equations—
which is a valid approximation of the full model in the
linear regime of f → 0—is solved by

δQ ¼ fLz

2jζj
�

sinh ðδz=λpÞ
sinh ðLz=2λpÞ

−
2δz
Lz

�
; ð8Þ

v ¼ KΓfLz coth ðLz=2λpÞ
2x2λpjζj

�
1 −

cosh ðδz=λpÞ
cosh ðLz=2λpÞ

�
ð9Þ

with δz ¼ z − Lz=2. The flow field in Eq. (9) corresponds
to pluglike flow [Fig. 1(b)], with constant velocity except in
a boundary layer of size λp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðΓη0K þ 2Kx22Þ=ðjζjx2Þ�

p
.

For sufficiently large Γη0, the permeation length λp∼
la

ffiffiffiffiffiffiffi
Γη0

p
, where we have introduced the active length scale

la ¼
ffiffiffiffiffiffiffiffiffiffiffi
K=jζjp

. This scaling holds in our simulations
(Fig. S1 in the Supplemental Material [33]).
Integrating the velocity over the channel, we obtain

M ¼ R Lz
0 vdz. This leads to

η ¼ Lzλpx2jζj
6ΓK½cothð Lz

2λp
Þ − 2

λp
Lz
�
: ð10Þ

The apparent viscosity η tends to a constant for Lz ≪ λp,
and increases linearly with Lz for Lz ≫ λp, as found
numerically [Fig. 1(b), inset]. Our theory shows that the
nontrivial behavior is due to the pluglike flow velocity
profile, which occurs here despite the absence of a fric-
tional substrate. This is reminiscent of Darcy’s flow in
porous media [24], or of permeative flows in cholesteric
liquid crystals [22,23]. We therefore refer to this linear
regime of contractile fluids as the “Darcy” regime. A
Darcy-like flow appears because Eq. (7) implies that δQ00 ∝
v0 in steady state, so that the terms dependent on δQ0 in
Eq. (8) introduce, among others, a term linear in v, which is
formally similar to the contribution describing friction with
a substrate. Physically, the mechanism underlying the onset
of a Darcy-like pluglike flow is that the active flow due to

the nontrivial order parameter profile pulls back on the fluid
and opposes the externally imposed flow. This results in the
removal of gradients of the order parameter and the velocity
in the bulk.
To address the stability of the Darcy regime as a function

of the pressure gradient, we now study the nonlinear
rheology of active contractile nematics. Inspection of
Eq. (5) suggests that in steady state we may expect a
balance between the body force and the divergence of the
stress tensor. The latter should be dominated by the active
contribution ∼jζj [7]. Dimensional analysis then yields f̃ ¼
fl=jζj as a potential control parameter, which determines
the relative weight between external forcing and internal
active stresses; we call this an active Ericksen number.
Here, l is a length quantifying the scale over which the
active stress and orientation order vary spatially; in our
simulations, we find the relevant length scale to be Lz,
hence, f̃ ¼ fLz=jζj.
Figure 2 plots the apparent viscosity found in simula-

tions as a function of f̃. We find that all the curves collapse
for sufficiently large values of f̃, whereas they diverge for
small forcing (to yield the linear regime apparent viscosity
discussed in Fig. 1). In other words, there is a crossover
between the Darcy regime and a universal shear thinning
regime, which is singly determined by f̃. The dependence
of the apparent viscosity on f̃ can be understood via a
qualitative scaling argument which adds the Newtonian and
the opposing active contribution to the throughput flow M,
as shown in [33].
The quasi-1D approximation described above is useful,

as it allows a complete characterization of the rheology
of a contractile gel, together with an analytically tractable
theory which uncovers the mechanism leading to a
Darcy-like linear regime with no yield stress. However,

FIG. 2. Plot of η=η0 against lnðf̃Þ from numerical simulation of
a quasi-1D contractile active material. At lower f̃, η=η0 is
constant and increases with the channel width. The inset shows
a fit to ½ð1þ bf̃Þ=ðbf̃ − cÞ�, with b, c > 0.
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the persistence of the Darcy regime to arbitrarily large
system size, which we observe in Fig. 1, is due to the
special features of our effectively 1D geometry [25,37].
In a fully 2D or 3D system, we only expect the Darcy
regime to be stable up to a finite system size, as it has
long been known [18] that infinitesimal splay fluctua-
tions destabilize the uniform state of the contractile
active nematic for Lz > Lc—an instability length scale
proportional to la.
To explore the more general problem of 2D contractile

rheology, we now use simulations to study the case in
which the Q tensor and velocity fields depend on both y
and z [though orientational order and flow can also
point out of the ðy; zÞ plane] [38]. We focus on the case
of a fixed (small) value of f. Figure 3(a) shows η as a
function of system size Lz. As anticipated, the Darcy-like
regime (corresponding to the increase of η with Lz) gives
way to another regime—characterized by much smaller
viscosity—beyond the instability length scale Lc.

In the unstable regime, the apparent viscosity varies
chaotically over time, so that the system is in the active
turbulent regime, best characterized for extensile fluids [5].
Remarkably, we find that in several cases the chaotic
dynamics settles into a spatially dependent nontrivial
traveling wave pattern; an example of the resulting Q
tensor texture is shown in Fig. 3(b). The existence of
multiple possible nontrivial traveling wave solutions is
reminiscent of the phenomenology of low-dimensional
models for Newtonian turbulence [39], although here these
states appear to be linearly stable. The traveling wave states
and turbulent patterns both involve a characteristic length
scale, which in our simulations is close to the active length
scale la known to set the typical vortex size in active
turbulence [32]. For sufficiently large f̃, we reenter the 1D
shear thinning pattern, as the forcing is strong enough to
suppress variation along the flow direction (as for shear
[40]; Fig. S2 in the Supplemental Material [33]).
To complement our simulations, we calculated exactly

the value of Lc—beyond which the Darcy regime is
unstable in 2D [38] with our boundary conditions—by
using a spectral Chebyshev method [33,41]. Figure 4 plots
the dependence of Lc on ξ, and shows that increasing the
flow aligning parameter leads to a dramatic enhancement
of the stability range of the quasi-1D Darcy regime. By
following Ref. [42], we can relate ξ to microscopic
parameters accessible experimentally via the formula

ξ ¼
2 ILþ2Is

IL−Is
þ q

2þ q
; ð11Þ

where IL and Is are, respectively, the largest eigenvalue
of the moment of inertia tensor of the constituent nema-
togens, and the mean of the two smallest eigenvalues.

(a)

(b)

(c)

FIG. 3. (a) A plot of η=η0 against Lz for small fixed body force
(f ¼ 10−6) for contractile active nematics (jζj ¼ 0.01). (b) Vis-
cosity versus time (left) and Qyz pattern (right) for a system with
Lz ¼ 128. (c) Viscosity versus time (left) and Qyz pattern for a
system with Lz ¼ 192. Axes tics in the right patterns in (b),(c) are
shown every 20 lattice sites.
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FIG. 4. Log-log plot of the instability length scale Lc (solid
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λp (dotted line) as a function of ξ, for A0 ¼ 1, γ ¼ 3, q ¼ 1=2,
Γ ¼ 0.33775, η0 ¼ 5=3, K ¼ 0.04, and variable ζ. Length scales
are in units of la.
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Equation (11) and Fig. 4 predict that, for instance, IL=Is ¼
4 and q ¼ 1=2 give ξ ¼ 1.8, for which Lc=λp ≃ 60 (Fig. 4),
corresponding to a large Darcy regime.
Another way to increase the stability range of the Darcy

regime is to decrease the value of the nematic order q → 0
[33]. This limit could be reached in models in which the
cubic term in Eq. (1) gets very small (for instance, a theory
for weakly ordered thin actomyosin films), or in mixtures
of prolate and oblate molecules [29].
In summary, we have shown that an active contractile

nematic subjected to a pressure-driven flow does not
possess a yield stress, and evades it by instead acquiring
a size-dependent viscosity associated with pluglike flow
which is reminiscent of Darcy’s flow in porous materials.
The Darcy regime is always found in a quasi-1D geometry
(with variation of order and flow along a single direction)
for sufficiently small values of the body force. In a 2D
geometry, the Darcy regime is instead only observed up to a
critical system size, beyond which we have found chaos
and active turbulence. The range of stability of the Darcy
regime in 2D is tunable, and can be increased virtually
indefinitely by a suitable choice of parameters. In particu-
lar, our results have suggested that this range can be very
large in thin and weakly ordered films of actomyosin, for
which la is a few microns [43]. We hope this prediction will
stimulate experiments on channel flow in active contractile
systems—such as, but not limited to, myosin-filament
mixtures—aimed at observing all rheological regimes we
predict here—Darcy flow, shear thinning. and chaos.

We thank the Higgs Centre for Theoretical Physics for
supporting two of J. T.’s visits to the University of
Edinburgh, during which part of this work was performed.
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