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Evidence is presented for a first-order magnetic phase transition in a gated two-dimensional semi-
conductor, monolayer-MoS2. The phase boundary separates a ferromagnetic phase at low electron density
and a paramagnetic phase at high electron density. Abrupt changes in the optical response signal an abrupt
change in the magnetism. The magnetic order is thereby controlled via the voltage applied to the gate
electrode of the device. Accompanying the change in magnetism is a large change in the electron effective
mass.
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Mobile electrons in a semiconductor can lower their
energy by aligning their spins, a consequence of the Pauli
principle. A ferromagnetic phase in which all electron spins
point in the same direction was proposed originally by
Bloch [1]. Experimental verification of this prediction on
two-dimensional (2D) electron gases in conventional semi-
conductors was elusive [2,3] on account of disorder [4,5].
Recently however, ferromagnetic ordering of 2D electrons
was reported in monolayer MoS2 [6] and twisted-bilayer
graphene [7]. A phase transition can be expected between a
ferromagnetic state at low density and a paramagnetic state
at high density. The behavior on crossing the phase
boundary is crucial: does the magnetization turn on
abruptly or does the magnetization increase gradually?
In three-dimensional (3D) ferromagnets such as iron, the

magnetization grows gradually from zero on crossing the
phase boundary. This is classified as a “second-order”
phase transition. An abrupt change in the magnetization, a
“first-order” phase transition, is more striking and is
observed in more exotic metals, so-called “quantum ferro-
magnets” [8]. This is potentially much more useful in
spintronics: a small change in a control parameter from one
side of the phase boundary to the other results in a massive
change in the magnetization. In metallic systems, the
control parameter is typically the temperature or pressure,
neither convenient for fast and efficient switching from one
phase to the other. This restriction is lifted in 2D semi-
conductors for which the electron density can be controlled
over a wide range simply via a voltage applied to a gate

electrode. However, magnetism of mobile electrons in two
dimensions is different to that in three dimensions. On the
one hand, mean-field theories, such as those of Bloch [1]
and Stoner [9], are provably inadequate in two dimensions
[10,11]. On the other hand, corrections to Fermi liquid
theory, effects which can result in a first-order phase
transition, are predicted to be much more pronounced in
two dimensions compared to three dimensions [8,12–14].
Experimentally, magnetic phase transitions of mobile
electrons in 2D semiconductors are unexplored.
We focus on monolayer MoS2, a 2D semiconductor in

the transition-metal dichalcogenide (TMDC) family. We
present evidence for a first-order phase transition between a
paramagnetic phase at high electron density and a ferro-
magnetic phase at low electron density. The magnetism is
thereby controlled electrically simply via the voltage
applied to a gate electrode. Accompanying this abrupt
change in magnetization is an abrupt change in the electron
effective mass, from a relatively small value in the para-
magnetic phase to a large value in the ferromagnetic phase.
The conduction band structure of MoS2 exhibits minima

at the edges of the Brillouin zone, at the K and K0 points
[15–17]. The spin-↑ and spin-↓ states are split by a small
spin-orbit interaction, ΔCB [Fig. 1(a)]. Calculations predict
ΔCB ¼ 3 meV [17]; experiments suggest ΔCB ¼ 0.8 meV
[18]. The bare electron mass is relatively large, 0.44mo
according to theory [17]; the dielectric constant relatively
small, such that the Bohr radius is just ∼0.5 nm, only
slightly larger than the lattice constant. Quantum effects in
gated MoS2 have recently been reported: conductance
quantization [18], Shubnikov–de Haas oscillations [19],
and ferromagnetic spin ordering [6].
Here, a monolayer of MoS2 is embedded between two h-

BN layers. Electrons are injected into the MoS2 by
applying a voltage to a metallic contact [Fig. 1(b)]. The
ground state of the mobile electrons is probed optically
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with photoluminescence (PL) and absorption spectroscopy.
In the PL experiment, a laser with photon energy 1.959 eV
is just slightly blue-detuned with respect to the optical
transition. Right-handed (left-handed) circularly polarized
light σþ (σ−) injects a spin-↓ (spin-↑) hole at the K point
(K0 point) [Fig. 1(a)]. This spin-valley selectivity is crucial:
the optical probe represents a spin-sensitive probe of the
electronic ground state. Furthermore, PL represents a local
measurement: information is gleaned from a few-hundred
nanometer diameter region on the sample. On this length
scale, inhomogeneous broadening in the optical response is
small [20,21].
PL in the presence of a Fermi sea of electrons has been

explored in a number of 2D semiconductor systems (GaAs
[4,5], CdTe [22], MoSe2 [23,24]) and there is a model to
describe it [25,26]. At very low n, PL arises from the
recombination of tightly bound electron-hole pairs, exci-
tons (X0). As n increases, X0 weakens and is replaced with
a redshifted peak, the trion (X−). The trion consists of two
electrons in a spin-singlet state and a hole, or, in more
accurate language, the bound exciton-Fermi sea polaron
[27,28]. At higher n, the trions become unbound. In a
simple picture, this occurs once an electron from the Fermi
sea resides “inside” the trion wave function [Fig. 1(c)]. In
PL, the X− peak evolves gradually into a broad peak,
typically redshifted with respect to X−, the Mahan exciton
[29]. A key property of the Mahan exction is the redshift of
PL with respect to absorption, EPL − EA < 0 [25,26]. In the
single-particle limit for equal electron and hole masses (as
for TMDCs), this shift is twice the Fermi energy.
We turn to gated MoS2. The absorption spectra at large

out-of-plane magnetic field (two trions in σþ polarization
but no trions in σ− polarization) show that the spins are
polarized (ferromagnetism) at low-to-intermediate densities
[6]. We focus here on PL. At n ≃ 0, the PL spectrum
consists of a single sharp line corresponding to X0 emission
(Fig. 2) [30]. On increasing n, X0 weakens and is replaced
with a redshifted line, X− (Fig. 2) [6,23,24]. At higher

densities, X− disappears and a broad peak (labeled Q in
Fig. 2) appears to the red. The Q peak exhibits the large
PL-absorption splitting characteristic of the Mahan exciton.
These features follow the standard behavior of PL in the
presence of a Fermi sea. There is however a radically
different feature. Strikingly, the smooth transition between
trion (X−) and Mahan exciton (Q) is missing: instead, there
is an abrupt change from one to the other resulting in a
“gap” in the PL spectrum (Fig. 2). This signals an abrupt
change in the Fermi sea: it is the first evidence for a first-
order phase transition. The second evidence comes from
the polarization of the PL. We excite and detect in all four
combinations of circular polarization, presenting the results
as a matrix (Fig. 2). For the Q peak, the response is
overwhelmingly “diagonal,” i.e., polarization preserving:
excitation with σþ (σ−) results in σþ-polarized (σ−-
polarized) PL; Conversely, for X−, there is a large
“nondiagonal” response (σ−-polarized excitation results
in σþ-polarized PL yet σþ-polarized excitation results in
a very weak PL signal), clear evidence for symmetry
breaking. The switch from one symmetry class to the other
is also abrupt as the density changes.
We plot EPL − EA as a function of n [Fig. 3(a)]. There is

an abrupt change at 3.0 × 1012 cm−2 signifying an abrupt
change in the nature of the PL process. Also, we analyze the
polarization dependence via

�
Pþ
P−

�
¼

�
a1 þ h a2
a3 a1 − h

��
Lþ
L−

�
; ð1Þ

where Lþ (L−) is the σþ-polarized (σ−-polarized) laser
intensity, Pþ (P−) the σþ-polarized (σ−-polarized) PL
signal. Pþ and P− are integrated over the spectral window
(Fig. 2). The term a1 describes the polarization-preserving
response. Terms a2 and a3 describe a transfer of the
polarization, from σ− at the input to σþ at the output
(a2); from σþ at the input to σ− at the output (a3). There
is one further term. In the experiment, a hole is injected either
at theK point or at theK0 point by choosing the polarization
[Fig. 1(a)]. This works well but imperfectly. In an applied
magnetic field, the hole can relax from theK point to the K0
point, a process is described by term h. We define the “PL
polarization transfer” asa2=ða1 þ a2 þ a3Þ, i.e., the fraction
of the total PL emitted in the polarization-nonconserving
channel. As a function of n, the PL polarization transfer
reaches values as high as 50% at intermediate density,
decreasing rapidly between n ¼ 2.5 × 1012 and n ¼ 3.5 ×
1012 cm−2 [Fig. 3(b)]. The opposite polarization-noncon-
serving process, a3=ða1 þ a2 þ a3Þ, is small at all n
(Fig. 3(b)). Both EPL − EA and the PL polarization transfer
change abruptly at the same electron density. We identify a
critical density of nc ¼ 3.0 × 1012 cm−2 (Fig. 3).
Without a magnetic field, the abrupt change in EPL − EA

is still clearly visible showing that there is still a phase
transition at n ¼ nc between states with different magnetic
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FIG. 1. (a) Band structure and allowed optical transitions of
monolayer MoS2. (b) A van der Waals heterostructure consisting
of monolayer MoS2 embedded in h-BN. (c) Schematic of a trion
in a two-dimensional Fermi sea. The black circles denote
conduction-band electrons; the red circle a valence-band hole.
The trion (X−, Bohr radius atr) is bound (unbound) at low (high)
electron density.
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order [31]. However, there is zero net magnetization at
Bz ¼ 0 (zero polarization transfer). At Bz ¼ 0, we propose
that for n < nc there are fluctuating “puddles” of spin-↑
and spin-↓ electrons such that the net magnetization,
averaged over time and space, goes to zero. This is
consistent with the Ising symmetry of the system at low
temperature: the spin-orbit interaction in the conduction
band forces the magnetization to lie either in the “up” or
“down” direction but in the absence of an applied magnetic
field, both directions are equally likely. The size of the
“puddles” is much smaller than the extent of the spatial
probe in this experiment. At Bz ¼ 0 and n > nc, the
puddles disappear—there is no magnetic ordering what-
soever. This line of thinking explains the role of the
magnetic field in these experiments—it establishes a
quantization axis, favoring either the up or the down
direction, and it allows long-range magnetic order stabiliz-
ing the ferromagnetic state. (We note that the Zeeman
splitting even at Bz ¼ þ9.00 T is an order of magnitude
smaller than the Fermi energy in these experiments
precluding magnetic order via a paramagnetic response.
Also, if the response were solely paramagnetic then a phase
transition would not occur, ruling out a giant paramagnet-
ism.) In a large Bz but at T ¼ 30 K, there is evidence that
the phase transition survives [31].
Our results are in agreement with recent theory [37],

which predicted spin ordering (and not ordering in the

valley index or combined spin-valley index [38,39]) and a
first-order phase transition between ferromagnetic and
paramagnetic phases. Both predictions in the theory depend
on corrections to Fermi liquid theory which arise via
infrared electron-hole excitations at the Fermi energy
[12–14]. This theory allows us to present a model that is
fully consistent with the experimental results (Fig. 4). For
n < nc, the two bands with spin-↑ are occupied resulting in
a ferromagnetic state with a large spin polarization [6]; for
n > nc, all four bands are occupied, the ferromagnetism is
destroyed and the spin polarization disappears [Fig. 4(a)].
The free energy F depends on the magnetization fractionM
according to

F ¼ aM2 þ bM4 þ cjMj3: ð2Þ

The first two terms represent the Ginzburg-Landau model
which, alone, lead to a second-order phase transition. The
third term is a nonanalytic correction. Crucially, theory
predicts a negative c for MoS2 [37]. Plots of F as a function
of density (i.e., versus a) show how a negative c leads to a
first-order transition between paramagnetic and ferromag-
netic phases [Fig. 4(b)]. We stress that the first-order nature
of the phase transition depends on the nonanalytic correc-
tion: without it, the transition would be second order.
In the ferromagnetic (FM) phase, we observe PL from

the trion: the trion is bound; in the paramagnetic (PM)
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FIG. 2. Photoluminescence of gated monolayer-MoS2 at 1.6 K and Bz ¼ 9.00 T. The excitation is either σþ or σ−; the detection either
σþ or σ−: the top (bottom) row corresponds to σþ (σ−) excitation; the left (right) column to σþ (σ−) detection. nc denotes the critical
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phase we do not observe PL from the trion: the trion is
unbound. In other words, there is an abrupt change in the
nature of the PL at nc, from trion to Mahan exciton. This
implies a profound change of the electron mass on passing
from the FM to the PM phase. We analyze the simple
concept [Fig. 1(c)]. The Fermi sea reduces the trion binding
energy ET because all states with k < kF are occupied and
become unavailable in constructing the trion wave func-
tion:ET ¼ E0

T − ℏ2k2F=2μ. (kF is the Fermi wave vector,E0
T

the trion binding energy in the limit n → 0, and μ the
reduced mass of an exciton and an electron. This result
comes from the Suris model [27] with the approximation
E0
T ≫ ℏ2k2F=2μ.) In the FM (PM) phase, two (four) bands

are occupied such that ET ¼ 0 at nFM ¼ μE0
T=πℏ

2

(nPM ¼ 2μE0
T=πℏ

2). The experiment tells us that nFM must
be larger than nc, and that nPM must be smaller than nc,
i.e., nFM > nPM. This conundrum can only be resolved
by a change in the reduced mass, μFM > 2μPM, i.e., a
significant decrease in the electron mass on going from the
FM to the PM phase. Taking E0

T ¼ 17 meV [6] and a hole
mass of mh ¼ 0.54mo [40], we find mFM

e > 0.65mo and
mPM

e < 0.40mo. The mass in the ferromagnetic phase
(mFM

e ) is consistent with the value deduced from
Shubnikov-de Haas oscillations at low density (0.8mo)
[19]; themass in the paramagnetic phase (mPM

e ) is consistent
with the calculated bare electron mass (0.44mo) [17].

This analysis is consistent with general expectations that
the mass is enhanced above its bare value in an interacting
phase.
As an outlook, we comment that, first, our work

establishes MoS2 as a platform for studying and exploiting
interaction-driven physics. The combination of an ultra-
small Bohr radius, spin and valley degrees of freedom, and
a small spin-orbit interaction creates a rich test bed. Second,
the ferromagnetic-to-paramagnetic phase transition can be
directly probed with a sensitive magnetometer. Finally, the
first-order phase transition between ferromagnetic and
paramagnetic phases enables the spin ordering to be
controlled simply via a small change to a gate voltage
opening a route to fast and efficient electrical switching.
The next step is to stabilize the ferromagnetic phase without
a large external field, for instance, via coupling to an
insulating 2D ferromagnet.
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