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Spectral statistics of disordered systems encode Thouless and Heisenberg timescales, whose ratio
determines whether the system is chaotic or localized. We show that the scaling of the Thouless time with
the system size and disorder strength is very similar in one-body Anderson models and in disordered
quantum many-body systems. We argue that the two parameter scaling breaks down in the vicinity of the
transition to the localized phase, signaling a slowing-down of dynamics.
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Introduction.—The phenomenon of many-body localiza-
tion (MBL) [1,2], the robust mechanism of ergodicity
breaking in the quantum world [3-5], has received a lot
of attention over the last decade. Investigations of MBL in
lattice models, pioneered in spin systems [6-8], were
extended to bosonic models [9,10] and to systems of spinful
fermions [11-14]. Remarkably, MBL, usually thought of as
an Anderson localization [15] in the presence of interactions,
was shown to occur in systems with completely delocalized
single particle states, either due to random interactions
[16-18] or in a quasiperiodic Fibonacci chain [19]. MBL
was also found in disorder-free systems as a result of gauge
invariance [20,21] or due to Wannier-Stark localization
[22,23]. MBL is also present in systems with long range
interactions [24-28], as well as for the Floquet states of
driven systems [29]. Local integrals of motion [30-36]
provide a common framework to understand features of
MBL such as the area-law entanglement entropy of eigen-
states [37,38], the logarithmic growth of bipartite entangle-
ment entropy after quench from a separable state [39,40], or
the Poisson statistics of energy levels.

The crossover between the level statistics of an ergodic
system with time reversal symmetry that follow predictions
of the Gaussian orthogonal ensemble (GOE) of random
matrices [41,42] and the Poisson statistics of the MBL
phase seems to be well understood [43—48]. However, a
recent analysis [49] of the spectral form factor (SFF), K (z),
in the wide regime of slow thermalization on the ergodic
side of the crossover [5S0-53] questions the very existence
of the MBL phase in the thermodynamic limit. Instead, it
predicts a two parameter scaling of Thouless time

tTh = lo@W/QLz, (1)

where L is the system size, W is the disorder strength, 7,
and Q are constants. The Thouless time #7y, is defined as the
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timescale beyond which the SFF follows the universal GOE
form. Another important timescale, the Heisenberg time
ty = 2x/A, is defined by the average level spacing A that
scales exponentially with a many-body system size of L,
A o e°t. The Heisenberg time t, is a limit beyond which
the discrete nature of the energy spectrum manifests
itself and where system dependent quantum effects are
unavoidable. In the thermodynamic limit, Eq. (1) implies
ttn/ty — 0. Hence, [49] arrives at the surprising conclu-
sion that disordered quantum spin chains have spectral
properties following the GOE predictions regardless of
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FIG. 1. Thouless time f1, vs disorder strength W extracted from

the SFF for 3D (upper plot) and 5D (lower plot) Anderson models
for various system sizes L. The black solid lines denote the
scaling of Eq. (1). The gray vertical lines denote the critical
disorder strength WP = 16.54 (W =57.3) in the 3D (5D)
model. The dashed lines denote the Heisenberg time #;. The
insets show t1,/L> (t,/L’) in the 3D (5D) case.
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the disorder strength W and that the MBL is merely a finite-
size effect.

In this Letter, we analyze the SFF in the delocalized
phase and its modifications when approaching the tran-
sition to the localized phase. We show that Thouless time
scales like L?, in agreement with Eq. (1), in the deep
delocalized phase in Anderson models as well as in
disordered many-body systems. The scaling with L evolves
to a larger power at the critical point of the Anderson
model, a phenomenon that we correlate with the diffusive
and subdiffusive transport properties, respectively, in the
delocalized phase and at the metal-insulator transition. The
results obtained for 3D and 5D Anderson models with
known localization properties put the conclusions of [49]
about the scaling of Thouless time f1, in considerable
doubt, suggesting the presence of an MBL phase at
sufficiently strong disorder strengths when finite-size
effects are properly taken into account.

Thouless time.—In a noninteracting system, the Thouless
time was introduced as the time to diffuse through the
system and reach its boundary [54]. It determines the
energy scale below which the level statistics are well
described by GOE [55], whereas its ratio with the
Heisenberg time fixes the dimensionless conductance of
the system [56] and enters the scaling theory of the
Anderson localization transition [57]. The Thouless time
ttp, in disordered many-body systems can be probed by
examining the behavior of the SFF [58—61] defined as

k() =5 ) @)

where €; are eigenvalues of the system after the unfolding
[62] (which sets their density to unity), g(¢) is a Gaussian
function reducing the influence of the spectrum’s edges, the
average is taken over disorder realizations, and A is the
dimension of the Hilbert space. For a GOE matrix, the SFF
is known analytically: Kgog(7) = 27 — zlog(1 + 27) for
7 <1 and Kgog(7) =27t —log(1 + 27) for 7 > 1. The
linear ramp Kgog(7) & 27 of SFF starting at 7 = 0 reflects
correlations between all pairs of eigenvalues in a GOE
matrix. In contrast, the SFF K(7) calculated for a physical
system follows the GOE predictions K (7) = Kgog(7) only
for 7 > 7y, defining 7y, which, in turn, is proportional to
the Thouless time ty, = 7r,fy. The proportionality factor
ty comes from the fact that unfolded eigenvalues ¢; enter
the definition of K (7); it is equal to the Heisenberg time 7,
determined by the inverse level spacing.

For a diffusive transport, the mean square displacement
(r*(t)) is proportional to time 7. Hence, the above definition
of tyy, coincides with the original definition of the Thouless
time in a diffusive system provided that the #, ~ L? where
L is the system size. For subdiffusion, the mean square
displacement behaves as (r?(¢)) ~ t* with 0 < a < 1; thus

N 2
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we expect tr, ~ L. In the deeply localized regime where
the localization length is much smaller than the system size,
a particle never explores the full system size, so that the
original Thouless time eventually diverges and becomes
larger than the Heisenberg time. In contrast, the Poisson
statistics are characteristic for a localized regime where the
SFF is independent of time; the Thouless time deduced
from the SFF is thus equal to the Heisenberg time. This
implies that the latter definition is applicable only in the
delocalized regime. Before we consider interacting models,
we examine first the Thouless time as defined by the SFF in
Anderson models.

Thouless time in 3D and 5D Anderson models.—The
Hamiltonian of the Anderson model describes the hopping
of a particle on a D-dimensional lattice with disorder
and reads

=1y (ele;+He) + ) eele, (3)
(i) i

where 6? is the creation operator for particle at site i, (., .)
denotes the sum over neighboring lattice sites, = 1 is the
tunneling amplitude, and ¢; € [-W, W] denotes uniformly
distributed uncorrelated random variables forming the on-
site potential. Numerical studies of transport properties of
the 3D Anderson model [63-66] indicate that transport is
diffusive for disorder strengths W < W3P ~ 16.54 [67] and
that the system remains insulating for W > W . Exactly at
the transition, the 3D Anderson model is characterized by
subdiffusion [68] and multifractal wave functions [69,70].
Studies of transport in 5D Anderson model [71] find a
localization transition, which is consistent with the findings
of studies of level statistics [72] giving the critical disorder
WP = 57.3, confirmed in [73,74].

Level spacing distribution in the 3D Anderson model
was studied in [55,75-78]. The Thouless times presented in
Fig. 1 unveil a long-range correlation aspect of level
statistics in Anderson models. Examples of SFF and details
on the Thouless time estimation are given in [79].

At the small disorder strength W, the Thouless times
depend quadratically on system size L (Fig. 1), following
precisely the scaling Eq. (1), which simply means the
dynamics are diffusive. For the 3D model, the tr,/L?
¢"/? behavior persists up to W ~ 12. For bigger disorder
strengths, the quadratic scaling with the system size is no
longer valid. Directly at the transition, W = W3P, the
Thouless time should scale as the Heisenberg time, i.e.,
tmn o L3, This is indeed the case, as the inset in the upper
plot in Fig. 1 demonstrates. A further increase of the
disorder strength leads to a slow increase of the Thouless
time ¢y, with eventual saturation to the Heisenberg time 4.

In the deep delocalized phase where t1;, scales with L2,
the ratio #r,/L? is nothing—up to a constant multiplicative
factor—but the inverse of the diffusion coefficient D(W),
in accordance with the original definition of the Thouless
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time. The dependence of D(W) with W is not known
analytically, but it is known that it decreases quickly
with W, vanishing at the critical point and scaling like
(W, —W)* below it, with the critical exponent s ~ 1.574.
In any case, it is definitely not ="/ as in Eq. (1). It may be
that, in a limited range of W values, D(W) can be
approximately fitted by an exponential decrease, but other
forms could do the job as well.

The 5D case is essentially identical, except that the
Thouless time scales like L instead of L3 at the critical
point. The growth of the Hilbert space size as L’ prevents
reaching system sizes L > 10. Nevertheless, the obtained
Thouless times #r;,, when rescaled by L3 as suggested by
the relation ty,, ~ ty valid at the transition, lead to a clear
crossing of the 1, /L’ curves at WP. The W dependence of
tmn/L? in the deeply delocalized regime is again approx-
imately reproduced by an exponential, although it certainly
fails near the critical point.

Diffusion and subdiffusion in Anderson models.—To
demonstrate that the obtained behaviors of the Thouless
time ty, are related to the time dynamics in Anderson
systems, we consider the initial state |y,) with a particle
located at a given lattice site with periodic boundary

conditions. The time evolved state |y, (1)) = e~iflt lwo) is
obtained employing the Chebyshev technique [80], which
allows us to get results for system sizes up to L = 240 and
L = 30 for the 3D and 5D cases, respectively. The mean
square displacement

D
(P (0) = (wo(0)] D (7 = 72w (1)), (4)

i=1

where r; is the ith component of the position operator I and
7 = (po(1)|7|yo(1)), allows us to distinguish (considering
first the L — oo limit and then, looking at times 7> 1)
diffusive (r?()) « Dt, subdiffusive (r*()) o %, and local-
ized behaviors. The latter occurs when (r?(t)) saturates
after the initial expansion of the wave packet. The time
dependence of the mean square displacement is reflected by
the function a(t) = dlog(r’(t))/dlogt. In the case of
diffusion, a(r) = 1. For subdiffusion, 0 < a(t) = a < 1,
and in the localized case a(t) — 0.

On the delocalized side of the transition in 3D and 5D
models, for W < WiP and W < WP, respectively, we
observe (Fig. 2) that a(f) initially increases over time,
reaching larger maximal values for increasing system sizes.
Assuming that this trend persists with increasing system
size, taking the thermodynamic limit L — co we end up
with a diffusive behavior of a(f) =1 for > 1. The
decrease of a(r) observed at the delocalized side of the
transition for a given system size L occurs when the wave
packet ceases to spread as its size approaches the system
size. The situation is different at the transition, where,
regardless of the system size, a(f) approaches a constant

1.0
0.8
084 0.6-
S 0.6- \ 0.4 1
— W=10 — W =35
—— W=15 W 021 —w =45
0.4{— W=16.5 —W =575
— W=18 Wo.0{—W=10

10 100 4 10° 10* 10° 100 4 102 10°

FIG. 2. Time dependent a(z) function for 3D (left) and 5D
(right) Anderson models for various disorder strengths W. In the
3D case, the results for the system size L = 80, 120, 160, 240 are
denoted by progressively thicker lines, whereas in the 5D case the
thin (thick) lines correspond to L = 20 (L = 30).

value azp = 2/3 in the 3D case [68,81] or asp = 2/5 in the
5D case. Subsequently, a() decreases when the size of the
wave packet approaches the system size L. This indicates
that, in the thermodynamic limit L — oo, for # > 1, there is
a subdiffusion of a(t) = azp(asp) at the transition in the
3D (5D) Anderson model. Finally, for W > WP (WeP),
a(t) decreases with the time being nearly independent of
the system size—a sign of localization.

The observed diffusion and subdiffusion for the 3D and
5D models agree with the results obtained for the Thouless
time 7. In the diffusive system, (r(7)?) « Dt, which
means that the time for reaching the boundary of the
system is 5, o L2. For subdiffusion, (r(¢)?) o * implies
that 2, o L?/®. Given the values for a3y and asp, we see
that the obtained scalings of 7%, on the delocalized side
of the transition and at the transition agree with the scalings
tt, & L? and t, & L> (or tg, « L? in the 5D case) obtained
from the SFF.

The results shown in Fig. 2 highlight the importance of
finite-size and finite-time effects. The limit L — oo fol-
lowed by t — oo has to be carefully examined to reveal the
trend toward diffusion or subdiffusion in the system. For
instance, if the data for 3D model at W = 15 were available
only up to time # = 10, one could incorrectly assume a
subdiffusion with @ =~ 0.75. It seems plausible that the case
of interacting systems is analogous, suggesting that the
claims about subdiffusion on the ergodic side of an MBL
transition [50,51,82,83] might be invalid in the asymptotic
limit L — oo, > 1 [84,85].

Thouless time in disordered many-body systems.—
Consider 1D disordered spin-1/2 chains with Hamiltonian:

L
H= le SiSter + 818l + ASIS{L) + 3 hiS;

mZ SISt + S1SY, + ASESE ). (5)
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FIG. 3. Thouless time ty, for J; —J, model (left) and XXZ
model (right) extracted from the SFF. ty, is divided by L? to
emphasize the scaling with system size L. The dashed lines show
the Heisenberg time 5.

where § ; are spin-1/2 matrices, J; = 1 is the energy unit,
periodic boundary conditions are assumed, and h; €
[-W, W] are independent, uniformly distributed random
variables. Setting J, =0 and A =1, we arrive at a dis-
ordered XXZ model, which has been widely studied in the
MBL context [86-92]. In particular, an analysis of mean gap
ratio 7 [93] predicts the critical value of disorder strength
We = 3.72(6) [94] for the transition to an MBL phase.
Similar reasoning leads to W =~ 9 for the J/; — J, model. For
details of our calculations of Thouless times, see [79].

In the case of /| — J, model, Thouless times obtained for
available system sizes seem to follow the scaling Eq. (1):
for increasing system size L the point W(L) where
tmn/L*(W) deviates from the "/ behavior, shifts to
larger disorder strength, as shown in the left panel of
Fig. 3. One interpretation of this behavior along the lines of
[49] is that one assumes that system size dependence of
W(L) continues indefinitely so that the scaling Eq. (1)
holds in the thermodynamic limit. This would imply that
there is no transition to an MBL phase. However, the
scaling of the Thouless time for available system sizes in
the 5D Anderson model, exhibited in the lower panel of
Fig. 1, is very similar: the curves for the larger system sizes
deviate from Eq. (1) at increasing disorder strength. As
such a behavior occurs in the 5D Anderson model despite
the localization transition taking place at W3P, we may give
a second possible interpretation of the result: the scaling
Eq. (1) is not broken at available system sizes because
of strong finite-size effects. While it is still possible to
devise the location of the critical point W3P provided one
knows the correct value of the exponent a governing the
subdiffusion at the Anderson transition, it is not clear how
to rescale the Thouless times fr, in the many-body
case. Indeed, the transport properties on the delocalized
side are not fully understood. For example, Ref. [95]
suggests a subdiffusive behavior with exponent a vanishing
close to the transition. Presumably, a sensible criterion
for the transition in the many-body case would be

tth  ty « et In any case, the main observation in [49]
is that #r,/L? is approximately equal to ¢"/< in the deeply
delocalized regime of the J; —J, model. This implies,
in turn, that the diffusion coefficient D(W) decreases as
e~W/2 exactly like in the 3D and 5D Anderson models.
Concluding that D(W) never vanishes is a dangerous
extrapolation, which leads to incorrect results for the
Anderson models. The similarity of the scaling of the
Thouless time for SD Anderson and J; — J, models suggests
that the conclusion of [49] about D(W) « e~"/¢ in the
J; —J, model for any disorder strength in the thermody-
namic limit is misleading. Our results show that the apparent
scaling Eq. (1) is probably a finite-size effect.

The finite-size effects in the J; —J, model are neces-
sarily enhanced by the next-to-nearest neighbor coupling
term. Thus, we may expect weaker finite-size effects for the
XXZ model. The scaling of the Thouless time for this
model is presented in the right panel of Fig. 3. The scaling
follows Eq. (1) only for disorder strengths W € [1,2]. We
observe two important differences with the results for the
J; —J, model. First, at weak disorder W, the exponential
dependence of the Thouless time #1, on W is weaker than in
the interval W € [1,2]. This is due to the proximity of the
integrable point W = 0 [96,97] with Poisson level statistics
and tq, = fy. Second and more important, we see a
breakdown of Eq. (1) for the XXZ model at W = 2, where
the data for L = 22 and L = 24 exceed the fye"/® line
even though the Thouless time is still an order of magnitude
smaller than the Heisenberg time #. This indicates that the
exponential scaling with W is a numerical observation
explicitly broken in the XXZ model and likely valid only in
a limited range in other systems. The data for L = 22 and
L = 24 are available only for W > 2 and W > 2.2 [79].
Nevertheless, the breakdown of the scaling Eq. (1) for
L =122, 24 at W=2.2 is apparent, indicating that the
L? scaling of Thouless time breaks down. This reflects
the slow-down of transport as the MBL transition is
approached.

Conclusions.—Our results show that the Thouless time,
defined by the behavior of the SFF, reflects the transport
properties in disordered noninteracting models, as we have
shown in the examples of 3D and 5D Anderson models. In
particular, the scaling of the Thouless time ¢, at the
transition encodes the subdiffusive behavior of the mean
square displacement (r?(f)) ~t* with the exponents
asp = 2/3 and asp = 2/5, leading to scaling #, ~ L*/¢
with system size at the transition.

The scaling of the Thouless time for the J; — J, model
seems to follow tr, ~ toL?e"/. However, the behavior of
try, is directly analogous to the case of the SD Anderson
model. The latter undergoes a transition to a localized phase
and the Thouless time does not exceed the 7,L%e"/® curve
only because of strong finite-size effects at available system
sizes. It is plausible that the situation is the same in the
Jy —J, model, raising doubts about the claims of [49].
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Our results for XXZ model demonstrate that the L? scaling
of the Thouless time ft,,, which is valid deep in the
delocalized phase, is evidently broken at W = 2.2, signaling
a transition to an MBL phase at a strong disorder strength.

Finally, let us mention alternative definitions of Thouless
time [98—104]. A comparison of these different approaches
is in progress. While finalizing this manuscript, we became
aware of the related works [105,106].
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