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Whether Anderson localization is robust against many-body interactions and, closely related, whether a
disordered many-body system can be thermalized are long outstanding issues. In this Letter, we address
these issues with the wave-turbulence theory. We show that, in general, the thermalization time in one-
dimensional disordered lattice systems is inversely proportional to the squared interaction strength in the
thermodynamic limit. It leads to the conclusion that such systems can always be thermalized by arbitrarily
weak many-body interactions and thus the localized states are unstable.
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Introduction.—Anderson localization was originally
derived for noninteracting disordered electron systems
[1–3] and later also for disordered phonon systems with
harmonic interactions [4,5], but whether it can survive
nonlinear interactions [6–9] is still an outstanding problem.
Most studies have suggested the existence of a threshold in
the interaction strength [10–14] below which localization
remains, while a few other works have suggested the
absence of such a threshold [15–17]. Recently, it has been
realized that the size of the system may play an essential
role. In particular, it has been found that introducing the
nonlinear interactions to a disordered electronic system can
induce the “dephasing catastrophe” in the thermodynamic
limit [18] and thus destroy many-body localization.
Numerical evidence that many-body localization becomes
unstable in the thermodynamic limit has also been found in
studies of disordered spin chains [19,20] and a classical
disordered nonlinear system [21].
This issue is closely related to the energy equipartition

hypothesis (EEH) in statistical physics, which states that, in
the thermodynamic limit, arbitrarily weak interactions may
result in energy equipartition among all degrees of freedom.
In a lattice system, it follows equivalently, that the energy
initially distributed over a portion of normal modes will
eventually spread over all normal modes. Obviously, the
EEH implies localized states in a general system must be
unstable. Conversely, if localized states are stable, the
EEH fails.
Checking the validity of the EEH is of fundamental

importance. It was initiated by the seminal work by Fermi
et al. in the 1950s [22], and since then, extensive and
intensive investigations have been done [23–42]. However,
in spite of all these efforts, it is still inconclusive whether
and under what conditions the EEH holds. In this Letter, we
study one-dimensional (1D) disordered systems. We show
analytically and verify numerically that the EEH is valid.

As a result, Anderson localization is unstable against many-
body interactions no matter how weak they are, given the
system is large enough.
The Hamiltonian of our systems is

H ¼
XN
i¼1

�
p2
i

2mi
þ ðqiþ1 − qiÞ2

2
þ λ

n
ðqiþ1 − qiÞn

�
; ð1Þ

where pi and qi, respectively, represent the momentum
and the displacement from the equilibrium position of the ith
atom of mass mj. For convenience below, we rescale
Hamiltonian (1) by energy density ε: qi ¼ q̃iε1=2 and
H ¼ εH̃, so that the parameter λ and ε has a scaling relation
λ̃ ¼ λεðn−2Þ=2. Here λ̃ represents the interaction strength. We
adopt this model for two reasons. First, a general interaction
potential can be expanded as the Taylor series of polynomial
terms ðqiþ1 − qiÞn. The theoretical prediction based on this
model thus applies to a general 1D disordered lattice. For
instance, we will provide in the following the numerical
results for the disordered Lennard-Jones (LJ) lattice system
with VðxÞ ¼ ½1=ð1þ xÞ6 − 1�2=72, which is frequently
adopted for modeling real lattice systems. It will be seen
that they are in good agreement with the predictions based on
Eq. (1). Second, the polynomial potentials allow us to deal
with the issue analytically by use of the wave-turbulence
theory. Thanks to this advantage, we are able to obtain
our key result; i.e., the equipartition time Teq is inversely
proportional to the squared interaction strength,Teq ∝ λ̃−2, in
the thermodynamic limit.
A brief introduction to the wave-turbulence theory.—The

wave-turbulence theory deals with a nonequilibrium stat-
istical system of many randomly interacting waves. It was
pioneered by Peierls in 1929 [43] and got its name, “wave
turbulence” or sometimes “weak turbulence,” in the 1960s
[44,45]. For a detailed introduction, see Refs. [46,47].
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In recent years, the wave-turbulence approach has been
taken for studying energy equipartition in 1D homogeneous
systems [31–36]. This approach has three key ingredients.
First, the p-wave resonance conditions

k1 � k2 � � � � � kp mod N ¼ 0 ð2Þ

for the wave vectors and

ω1 � ω2 � � � � � ωp ¼ 0 ð3Þ

for the frequencies should be satisfied simultaneously. Here
ki and ωi represent, respectively, the wave number and the
frequency of the ith normal mode. Second, these p-wave
resonances should be nontrivial and connected to form a
network involving all N normal modes. Under such
conditions, the irreversible transfer of energy among all
normal modes will occur. Resonances satisfying the above
conditions, but resulting in only a nonlinear frequency shift
and not contributing to energy transfer among modes, as
discussed, for example, in Ref. [31], are referred to as trivial
resonances. Third, the nontrivial resonances of the p wave
should dominate. As a result, energy equipartition is
attributed to the p-wave nontrivial resonance, which dis-
tinguishes the wave-turbulence approach from other meth-
ods, such as the Chirikov resonance [28–30]. Note that the
allowed resonances of the lowest order in (1) are n-wave
resonances, but following the wave-turbulence approach
they are not necessarily nontrivial. In the case of small
system size, it is found that the size of the nontrivial
resonance for homogeneous systems of n ¼ 3 and n ¼ 4 is
p ¼ 6 [31,32]. As a result, the scaling law of equipartition
time is Teq ∝ λ̃−8 and Teq ∝ λ̃−4, respectively. In the
thermodynamic limit, it has been shown that the dominant
resonances are the n-wave ones (p ¼ n) for homogeneous
systems (1) of n ≥ 4, which leads to Teq ∝ λ̃−2 [34–36].
Nevertheless, for homogeneous systems of n ¼ 3, three-
wave resonances are forbidden due to the dispersion
relation, and thus the resonance of the lowest order in
the thermodynamic limit is the four-wave resonance
(p ¼ 4), which leads to Teq ∝ λ̃−4. It has also been found
that, in the case of an odd n, some deviations from wave-
turbulence approach are observed [34,36].
Wave-turbulence approach for disordered many-body

systems: Theoretical analysis.—Disorders enter the system
(1) via randommassesmi, which fluctuate around hmii ¼ 1.
In the present Letter, mi is chosen independently and
identically from a uniform distribution between 1� δm;
the strength of disorder is thus characterized by δm. In
general, normalmodesof disordered systems can beobtained
by diagonalizing the harmonic matrix, which is defined as

Φ ¼ Φij ¼
1ffiffiffiffiffiffiffiffiffiffiffimimj

p ∂2H
∂qi∂qj

����
q¼0

: ð4Þ

There exists a unitary transformation matrix U, whose
columns are the normal modes uk, such that

U†ΦU ¼ Ω2; ð5Þ

whereΩ is a diagonal matrix whose elements are the normal
mode frequencies, namely, Ωkl ¼ ωkδkl. Spectral index k
follows an ascending order so that ωk ≤ ωkþ1.
We introduce the direct and inverse discrete transforma-

tion of the qj variables,

Qk ¼
X
j

ffiffiffiffiffiffi
mj

p
qjukj ;

qj ¼
X
k

Qkukj=
ffiffiffiffiffiffi
mj

p
: ð6Þ

With this transformation, the complex amplitude of a
normal mode akðtÞ is

akðtÞ ¼
1ffiffiffiffiffiffiffiffi
2ωk

p ðPk − iωkQkÞ; ð7Þ

where Pk ¼ _Qk. Noting a−k ¼ ak and substituting Eqs. (6)
and (7) into Eq. (1), we obtain

H̃ ¼
X
k

ωkaka�k þ
λ̃

n

X
k1;…;kn

A1;…;n

Yn
s¼1

ða�ks þ aksÞ; ð8Þ

where the matrix A1;…;n weights the transfer of energy
among modes k1; k2;…; kn and is given precisely by

A1;…;n ¼ ð−iÞnÃ1;…;n

Yn
s¼1

ffiffiffiffiffiffiffiffiffi
2ωks

p
2ωks

; ð9Þ

where

Ã1;…;n ¼
X
j

Yn
s¼1

�
uksjþ1ffiffiffiffiffiffiffiffiffiffimjþ1

p −
uksjffiffiffiffiffiffimj
p

�
: ð10Þ

Then, the equation of motion for the k1th complex normal
mode reduces to

i _ak1 ¼ ωk1ak1 þ λ̃
X

A1;…;n

Yn
s¼2

ða�ks þ aksÞ: ð11Þ

Equation (11) has a Hamiltonian structure with canonical
variables fiak; a�kg, describing the time evolution of the
amplitudes of the normal modes of the system. To evaluate
the equipartition time, it is convenient to introduce the
wave action spectral densityDiδ

j
i ¼ hakia�kji. Following the

wave-resonance approach, we then obtain the n-wave
kinetic equation in the thermodynamic limit and in the
weak-nonlinearity limit (see Supplemental Material [48]),
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_D1 ¼ λ̃2
Z

1

−1
jA1;…;nj2FðD1;nÞδðω1;nÞdk2 � � � dkn; ð12Þ

where FðD1;nÞ is a function of D1; D2;…; Dn, and
δðω1;nÞ is the shorthand notation of delta function
δðωk1 � ωk2 � � � � � ωknÞ. One can easily show that the
term A1;…;n reduces to δðk1;nÞ multiplying by a constant if
the system is homogeneous, where the integral does not
vanish when the spectral indices (namely, the wave
numbers of homogeneous lattices) satisfy the resonance
condition (2) with p ¼ n. Otherwise, by applying the
spatial translation invariance and the normal mode solu-
tions to Eq. (10), one can prove that the integral must
vanish. However, in disordered systems, the spatial trans-
lation invariance is broken and thus A1;…;n does not vanish,
in general. We take the system with n ¼ 3 as an example to
illustrate this fact. In Fig. 1(a) we plot jÃ1;2;3j calculated by
Eq. (10) in k1-k2 plane at fixed k3 ¼ 48, in the case of a
homogeneous lattice with N ¼ 64. The amplitude of
jÃ1;2;3j is represented by the gray level in the logarithm
scale. These plots confirm that jÃ1;2;3j does not vanish only
when the condition (2) is satisfied. Note that, due to the
restriction of the dispersion relation, the conditions (2) and
(3) cannot be satisfied simultaneously, resulting in the
vanishing of the integral in Eq. (12). Therefore, the three-
wave resonance is forbidden for the homogeneous lattice
of n ¼ 3.
In contrast, by introducing disorder with δm ¼ 0.2, Ã1;2;3

turns out to be nonzero almost in the entire k1-k2 plane, as
shown in Fig. 1(b). In Fig. 1(c), we plot further the
probabilityP of nonvanishing Ã1;2;3 as a function of disorder
strength δm. The probability is calculated by checking the
amplitude of Ã1;2;3 for all of the combinations of k1, k2, and
k3. When defining 10−9 to be the threshold below which
jÃ1;2;3j is considered vanishing, we find that the probability
jumps from P ¼ 0 to P ¼ 1 at δm ≠ 0. Even when the
threshold is increased up to 10−6, the jump from P ¼ 0 to
nonzero P is still clearly seen. Therefore, once the spatial
translation invariance is removed, Ã1;2;3 does not vanish.
So only one restriction exists, which is the resonance

condition (3) for the frequencies. For lattice systems, the

normal frequencies are bounded. Specific to our system (1),
frequencies are confined in the interval ½0; 2= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δm
p �.

Therefore, in the thermodynamic limit, the frequencies are
dense. As such, the resonance condition (3) is always
satisfied for p ¼ n and, based on it, all the modes form a
connected network. For example, for n¼3, ω1−ω2−ω3¼0
is expected for any given mode of ω1 if ω2 ¼ ω1=2þ δ and
ω3 ¼ ω1=2 − δ, where δ is a constant. As functions of δ, ω2

and ω3 cover the interval of ½0;ω1� as δ varies. In other
words, modes in this interval are all connected through ω1.
Hence, all the modes of the system are connected in this
three-wave resonance network, which can be concluded by
considering the case that ω1 tends to the largest frequency
ωmax ¼ 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δm

p
. So the condition required by the

wave-turbulence approach is fully satisfied.
These analyses show that the n-wave resonances domi-

nate the irreversible transfer of energy of disordered
systems (1) in the thermodynamic limit. To get our main
results, we rewrite Eq. (12) as

_D1 ¼ η1 − γ1D1; ð13Þ

where η1 and γ1 are D1-independent constants proportional
to λ̃2. A detailed derivation of this formula is given in the
Supplemental Material [48]. The satisfying of the reso-
nance condition guarantees a nonzero γ1, which leads to
D1ðtÞ ∼ expð−γ1tÞ (note that η1 ∼ 0 in the weak interaction
regime of small λ̃). Then, by defining the equipartition time
Teq as the characteristic time of relaxation, we obtain

Teq ∝ λ̃−2 ð14Þ

for n ≥ 3. This is the key result of our study. It means that
for a given λ̃ there is a finite Teq above which energy
equipartition is reached.
We would like to emphasize that the above approach is

applicable to a general system with analytical potential.
Indeed, by performing Taylor expansion of the potential,
the second term on the right-hand side of Eq. (8) is replaced
by a sum over n, so we can repeat the subsequent treatment
straightforwardly. As a result, in such a case, though all of
the multiwave resonances coexist, they do not change the
scaling law. Meanwhile, we would like to point out that
Eq. (14) cannot be promised for the models with external
potentials (i.e., the so-called on-site potentials), because
there is a truncation frequency ωmin and in the extreme case
that ωmin > ωmax=2, three-wave resonances are forbidden.
However, one can expect it approximately holds when ωmin
is small enough.
Numerical verification.—Now we put the scaling law of

Teq into a numerical test. Strictly speaking, the above
conditions for a finite system may not be met since
frequencies of normal modes are discrete. However, in
the presence of the nonlinearity, each frequency is broad-
ened. When the system size is large enough, the frequency

FIG. 1. The logarithm of jÃ1;2;3j in k1-k2 plane at k3 ¼ 48.
(a) The homogeneous lattice systems and (b) the disordered
systems. (c) The probability of nonvanishing Ã1;2;3 versus the
disorder strength.
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interval can still be densely covered. Our numerical
simulation below is to show that the scaling law (14)
can be perfectly approached with the increase of the system
size. Note that Eq. (14) can be written as Teq ∝ λ̃−2 ¼
λ−2εðn−2Þ. For the sake of convenience, we fix λ to λ ¼ 1
and investigate the dependence of Teq on ε.
We adopt the method presented in Ref. [37] to calculate

Teq. The energy of the kth mode is Ek ¼ ðP2
k þ ω2

kQ
2
kÞ=2.

Thermalization is probed by ξðtÞ ¼ 2ξ̃ðtÞeηðtÞ=N, where
ηðtÞ¼−

P
N
k¼N=2wkðtÞlogwkðtÞ is the spectral entropy,where

wk¼EkðtÞ=
P

N
l¼N=2ElðtÞ, ξ̃ðtÞ ¼ 2

P
N
N=2 ĒkðtÞ=

P
N
1 EkðtÞ,

and ĒkðTÞ ¼ ð1=½ð1 − μÞT�Þ R T
μT EkðPðtÞ; QðtÞÞdt is the

average energy of the kth normal mode. Here, parameter μ
controls the size of the timewindow for averaging and is fixed
at μ ¼ 2=3 in simulation. The equipartition time Teq is
measured as the time when ξðTeqÞ ¼ 1=2.
In simulations, we use the eighth-order Yoshida method

[49] to integrate the equations of motion. The typical
integration time step is set to be Δt ¼ 0.1. In order to
reduce the fluctuations, as done in Ref. [37], an average
over 120 random initial states is performed for each
realization of disorder. In the following, when no confusion
arises, we use ĒkðtÞ or ξðtÞ to denote a random variable and
its average on initial states.
Figure 2 shows the energy ĒkðTÞ at different times. It is

for the system of n ¼ 3 with N ¼ 1023, δm ¼ 0.2, and
ε ¼ 10−4. Energy initially concentrates on 10% of modes
of the lowest and highest frequencies, respectively, in
Figs. 2(a) and 2(b). Note that the normal modes of high
frequency are localized, while those of low frequency are
extended. We see that in both cases equipartition eventually
occurs. The metastable state, in which ĒkðTÞ is hardly
changed in a very broad range of time and has been found

in the homogeneous Fermi-Pasta-Ulam-Tsingou lattice
[38] and φ4 model [39], is not found here. This phenome-
non is similar to what was found in the homogeneous
Frenkel-Kontorova model [40]. Furthermore, equipartition
is seen to occur even when only an extended mode or a
localized mode is excited. Figures 2(c) and 2(d) show,
respectively, the results of the energy spectrum when we
initially excite the mode of the lowest and the highest
frequency.
In Fig. 3(a), we show Teq as a function of ε for disordered

systems of n ¼ 3, 4, and 5 with δm ¼ 0.2 and different
system sizes, when energy initially concentrates on the
10% of modes of the lowest frequencies. It can be seen that,
the larger the system size is, the better the scaling law:
Teq ∝ ε−ðn−2Þ agrees with the data, meanwhile, the lower
the energy density is, the larger the size must be to converge
to the theoretical prediction. These facts lead us to conclude
that the scaling law (14) is exact for arbitrarily low-energy
density or arbitrarily weak nonlinearity in the thermody-
namic limit. For a finite system, the deviation from the
universal scaling law may appear with the decrease of
energy density (see Supplemental Material [48] for more
evidence). This deviation is similar to that observed in
homogeneous lattices [32,33,50]; it suggests that a thresh-
old for equipartition might exist. Note that Teq increases as
a function of n since in the low-energy density the
amplitude of the variable is smaller than 1 and thus the
perturbation amplitude decreases with the increase of n.
Finally, we report the result of the disordered LJ model.

Figure 3(b) indicates that Teq ∝ ε−1, which is consistent
with the prediction for n ¼ 3. This follows from the fact
that the lowest order of nonlinearity in the Taylor expansion
of its potential is the cubic term. In the low-energy density
regime, the cubic term is much larger than higher-order
terms and thus dominates the equipartition process. We see
that this leads to a key difference from the case in the
homogeneous counterpart, where Teq ∝ ε−2 due to the

FIG. 2. The function ĒkðTÞ versus k=N at different times for a
system of n ¼ 3 with N ¼ 1023, δm ¼ 0.2, and ε ¼ 10−4.
Energy is initially distributed among (a) 10% of modes of the
lowest frequency, (b) 10% of modes of the highest frequency,
(c) on a mode of the lowest frequency, and (d) on a mode of the
highest frequency, respectively.

10-4 10-3 10-2
103

105

107

10-5 10-4

103

104

slope:
3

slope:T
eq

slope: 1

(a) (b)

slope:
1

FIG. 3. The equipartition time Teq as a function of ε in log-log
scale for (a) systems (1) of n ¼ 5 (top), 4 (middle), 3 (bottom),
and (b) LJ lattice systems, at system sizes of N ¼ 511 (hexagon),
1023 (star), 2047 (circle). All simulation results are obtained with
δm ¼ 0.2. Energy is initially distributed among 10% of modes of
the lowest frequencies.
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absence of the three-wave resonance [34]. This implies,
contrary to the common belief, that the disorder can
accelerate the process of thermalization in the weak-
nonlinearity regime.
Conclusion and discussion.—In summary, we have

shown that, in a general 1D disordered lattice system,
localized states are unstable in the presence of interactions
and EEH holds. Moreover, in the frame of wave-turbulence
theory, thermalization is dominated by multiwave reso-
nances, thus the scaling exponent of thermalization time is
determined by the number of the waves and is independent
of the spatial dimension. Therefore, energy equipartition
can be expected in higher-dimensional systems because
the scaling law of the thermalization time we have obtained
should also be valid. It is important to note that the
thermodynamic limit is a key premise of wave-turbulence
analysis. Besides, it is valid for weak nonlinearity and in
the models without on-site potentials. This fact implies
three situations where stable localized states might be
observed, i.e., in a system of a finite size and/or with
strong interactions or in a system with an on-site potential.
These possibilities deserve further investigation. In addi-
tion, as a theory of interacting waves, the applications of the
wave-turbulence analysis to other important and interesting
issues, such as heat transport in the classical lattice and
thermalization of the quantum systems, are also desired.
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