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Classification of topological phononics is challenging due to the lack of universal topological invariants
and the randomness of structure patterns. Here, we show the unsupervised manifold learning for clustering
topological phononics without any a priori knowledge, neither topological invariants nor supervised
trainings, even when systems are imperfect or disordered. This is achieved by exploiting the real-space
projection operator about finite phononic lattices to describe the correlation between oscillators. We
exemplify the efficient unsupervised manifold clustering in typical phononic systems, including a one-
dimensional Su-Schrieffer-Heeger–type phononic chain with random couplings, amorphous phononic
topological insulators, higher-order phononic topological states, and a non-Hermitian phononic chain with
random dissipations. The results would inspire more efforts on applications of unsupervised machine
learning for topological phononic devices and beyond.
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Topological phononics unveil complex mechanisms
behind unconventional phononic wave phenomena [1–7],
which lead to the backscattering immune phononic trans-
port modes [8–12] and would be a promising route to the
future robust on-chip communication devices [2,13–17]. To
characterize nontrivial phononic topological properties, the
key fundamental physical concept is the topological invari-
ant, which is responsible for classifying the topological
classes. However, there is no universal topological invariant
for all topological phononic systems. Furthermore, it is
even difficult to properly define them when considering
many aspects, such as symmetry conditions [17], geometry
features [11], and material dispersive responses [12]. Yet,
no matter whether topological invariants are well defined or
not, topological properties of phononic states are essen-
tially embedded in the global structure features. So far,
most of topological invariants are defined based on the
Bloch-momentum space of the perfect periodic structure
[5,15,18,19]. However, these momentum-based approaches
will have inevitable shortages or inapplicability when
handling phononic models like the spatial randomness of
mechanical parameters, non-Hermitian features, or amor-
phous structures. Therefore, finding a general way to
explore the topological properties based on real space
without defining topological invariants ad hoc will be
significant but also challenging for the future development
of topological phononics and beyond.
Machine learning has shown the power on condensed

matters, quantum domains, and topological physics [20–24],
e.g., the phase learning of quantummany-body systems [25–
29], inverse design of topological optics [30,31], and
optimization of metamaterial devices [32–34]. However,

most of these research works focus on supervised learning,
which cannot capture the sample features without a priori
knowledge and needs extensive samples with well-defined
labels. Recently, unsupervised learning, which can find
potential principles behind raw datasets without labels,
has been attracting much attention about its ability on phase
detections and classifications in spin systems [35–37],
particle explorations in high energy physics [38,39], and
efficient material discoveries [40]. Therefore, unsupervised
machine learningwouldbe themeaningful and powerfulway
to detect and classify topological properties from abundant
phononic structures without any a priori knowledge about
the topological mechanism.
In this Letter, we demonstrate the unsupervised manifold

clustering of topological phononics based on similarities of
dynamic properties in real space. The real-space dynamic
properties of phononic system are represented by its
projection operator P̂, which reflects the responses and
correlations between oscillators and thus contains the
necessary information about the topological properties
[41–44]. We first show manifold learning can unsupervis-
edly learn the features about the finite one-dimensional
(1D) Su-Schrieffer-Heeger (SSH) chain efficiently and
classify the topological classes due to nonlinear dimen-
sional reduction [45,46]. Then, based on the real-space
descriptions, we successfully demonstrate the unsupervised
clustering of several topological phononics cases: (1) dis-
ordered phononic SSH chain with random couplings,
(2) amorphous phononic systems with nonzero local
Chern number, (3) higher-order phononic models, and
(4) non-Hermitian phononic chain with random dissipation
terms. These phononic systems are mapped into points of
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the manifold space with reduced dimensions based on real-
space features and are thus conveniently classified into
different groups associated with different topological
properties.
Let us introduce the real-space descriptors of phononic

systems. The dynamic equations of a phononic system can
be written as Ĥjψ li ¼ Ωljψ li, where ψ l means the lth mode
eigenstate of Ĥ with the frequency ωl (Ωl ¼ ω2

l ), l ¼
1;…; L with L as the system size. The time-reversal
counterpart will be Ĥ†jφli ¼ Ω�

l jφli. Therefore, the pro-
jection operator P̂ of cutoff frequency ωc is introduced as
[41–44,47,48]

P̂ ¼
X

ωl≤ωc

jψ lihφlj: ð1Þ

When the system is Hermitian Ĥ ¼ Ĥ†, hφlj ¼ hψ lj. P̂
describes the responses and correlations between the
phononic oscillators, Pij ¼ hxjjP̂jxii, playing the role of
Green’s function. Using P̂n to denote the L × Lmatrix P̂ of
the nth sample (n ∈ N) in a set ofN different realizations of
the Hamiltonian parameters, we introduce a Gaussian
kernel with controlled variance ε to define the similarity
between samples n and n0

Kεðn; n0Þ ¼ exp

�
−
jjP̂n − P̂n0 jj2

2εL2

�
; ð2Þ

where jj · jj is the taxicab L1-norm distance,
jjAjj ¼ P

i

P
j jAijj. We can see that Eq. (2) reflects the

similarity by calculating the projection operator between
two phononic samples n and n0 such thatKεðn; n0Þ ≈ 1when
P̂n can transform into P̂n0 with small deformation. If
considering the topological invariant v that is a func-
tion of P̂ and vðP̂þ ΔP̂Þ ≈ vðP̂Þ þ f½∂vðP̂Þ�=∂P̂gΔP̂,
the difference between different P̂ will be responsible for
classifying the topological properties vðP̂Þ, namely, jvðP̂nÞ−
vðP̂n0 Þj ∝ jjP̂n − P̂n0 jj. Different topological classes with
distinct invariants will have small similarity Kε.
We exploit the typical manifold learning algorithm based

on probabilistic transition process: the diffusion map,
which has been widely used and developed in data science
[49,50]. The diffusion process is defined by the local
probability transition matrix Tn;n0 ¼ ð1=ZnÞKεðn; n0Þ,
where Zn ¼

P
N
n0¼1

Kεðn; n0Þ is the normalization term
guaranteeing the probability conservation

P
n0 Tn;n0 ¼ 1.

The global diffusion distance between sample n
and n0 after t steps can be described by dtðn;n0Þ≡P

n00 ð1=Zn00 ÞjTt
n;n00−Tt

n0;n00 j2¼
P

N−1
j¼1 λ

2t
j jðϕjÞn−ðϕjÞn0 j2≥0,

where the ϕj are the jth right eigenvectors of T̂,
T̂ϕj ¼ λjϕj, with the ordered eigenvalues λN−1 ≤ � � � ≤
λ2 ≤ λ1 ≤ 1 ¼ λ0. The j ¼ 0 diffusion mode does not
contribute since it is a constant vector. It is clear that after

long time diffusion t → ∞, the first few components ϕj

with largest eigenvalues λj will dominate, which means that
we only need a few components ϕj to represent the samples
well so as to reduce the dimension. In particular, the
number of the top-ranked largest eigenvalues λj could
determine the number of topological clusters without
a priori knowledge [37,49,50]. In addition to the diffusion
map demonstrated here, other alternative manifold learning
algorithms, i.e., spectral clustering, can be also used to
obtain similar results. The main points are the real-space
descriptor (1) and the similarity (2) to properly describe the
sample distances.
Topological phononics with random couplings.—We use

the finite 1D SSH phononic chain model [2] to demonstrate
the unsupervised clustering of topological phononics in
Fig. 1(a). The dynamic equation can be written as

m
∂2

∂t2 ai ¼ −κ1ðai − bi−1Þ þ κ2ðbi − aiÞ;

m
∂2

∂t2 bi ¼ −κ2ðbi − aiÞ þ κ1ðaiþ1 − biÞ; ð3Þ

where ai and bi are the displacements of two atoms in the
ith unit cell from their equilibrium positions, the elastic
constants κ1 ¼ κ0δ, κ2 ¼ κ0ð1 − δÞ, the κ0 is a constant
spring constant, and the random number δ ∈ ð0; 1Þ. We
note that throughout the main text the open boundary
condition is used since we want to explore the finite noisy
systems beyond the traditional periodic Bloch framework.
The cases with periodic boundary conditions and perfect
unit cells are listed in the Supplemental Material [51].
The calculated projection operator P̂ for the different δ

will have some different features as shown in Fig. 1(b),
which can be captured and learned unsupervisedly by the
manifold learning. Following the scheme described above
on the dataset fP̂ng, we can see that there is a second high
value (j ¼ 1) in Fig. 1(c), which means that the connections
of samples can be reflected by the ϕ1. If we assign all
the samples in the manifold space ϕ1 and ϕ2 in Fig. 1(d),
we can see obviously the samples could be classified
into two different groups according to the δ, with the
threshold value δ ¼ 0.5, coinciding with the topological
transition of the SSH model. For the SSH chain model,
the winding number of this system can be calculated by
[59] v ¼ ð1=2πiÞ R π=a

−π=a dkq
−1∂kq, where q ¼ κ1 þ κ2eika,

which will be v ¼ 1 for κ1 < κ2 (δ < 0.5) and v ¼ 0 for
κ1 > κ2 (δ > 0.5).
We introduce random elastic constants in the 1D SSH-

like phononic chain, as shown in Fig. 1(e). The calculated
eigenvalues λj and the manifold space fϕjg in Figs. 1(f)
and 1(g) show that the samples can be also clustered well
by our scheme, which resembles the topological transition
in the standard SSH phononic model for opposite Δκ. The
topologically induced interface states for two disordered
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phononic chains with opposite signs of Δκ are clearly
shown in Fig. 1(h). The successful unsupervised clustering
for disordered valley Hall states in 2D honeycomb pho-
nonic lattices with random mass biases can be found in the
Supplemental Material [51], which is not discernible by the
edge modes. Moreover, we would like to note that edge
modes can exist for trivial finite structures without non-
trivial topology so that, for finite systems with open
boundary conditions, the edge modes can be trivial and
are nonsufficient to correctly determine topological classes.
Amorphous topological phononics insulators.—Recently,

the amorphous phononic lattice from random point sets has
shown nontrivial topological properties and robust edge
states, which demonstrates that the local interactions and
local geometry arrangements are sufficient to generate chiral
edge modes [47,48], as shown in Fig. 2. The amorphous
phononic topological systems are constructed by gyroscopes
that are linked by springs [47], of which the topological
properties can be adjusted by thegeometric structures and the
amorphous types. Because the sample structures are geo-
metrically different due to randomness, we exploit a coarse-
grained mapping from the arbitrary amorphous structures
into a uniform space for building uniform descriptions, as
shown in Fig. 2(a): mapping the average displacement field
of oscillators in the dotted block of the real space into the
coarse-grained space and then constructing the P̂r based on
the reduced uniform space.

Based on the dataset fP̂r
ng, we calculate eigenvalues λj

associated with the manifold space fϕjg in Figs. 2(b)
and 2(c). We can see the samples can be clustered into three
different groups, coinciding with the topological classes of
amorphous phononics. For amorphous topological pho-
nonics insulators, the local Chern number v is responsible
for describing the topological properties [44,47]: v ¼
12πi

P
i∈A

P
j∈B

P
k∈C PijPjkPki − PikPkjPji, where A,

B, and C are three areas around the positions (see
Supplemental Material [51]). As further demonstrated in
Fig. 2(d), two different amorphous phononic topological
insulators in samples classified by our scheme indeed show
opposite chiral edge modes, with opposite local Chern
numbers v ¼ �1. The samples in the third group do not
show any chiral edge mode, corresponding to the trivial
topology with v ¼ 0.
Higher-order topological phononics.—Besides these

(d − 1) topological properties in d-dimension systems, the
higher-order topological states (d − 2 or d − 3) are attracting
much attention [6,7,15,61–63]. Some higher-order topologi-
cal phononics can be described by the quantized shift of the
Wannier center that is related to the Berry connection [6,63].
The higher-order topological phononics can be constructed
by the continuum phononic systems and the dynamic
equations can be approximatelywritten as ẍi ¼ Dijxj around
the resonant frequencyω0 [15,64], whereDij is the effective
coupling between the oscillators xi and xj.

(a) (e)

(f) (g)

(h)

(b)

(c) (d)

FIG. 1. The unsupervised clustering of 1D phononic SSH model with projection operator P̂. (a) The SSH chain with finite size
L ¼ 20, mass m ¼ 1.0, spring constant κ0 ¼ 1.0, and δ ∈ ð0; 1Þ. The gray blocks indicate the unit cells. (b) The projection operator
matrix Pij for the cases δ ¼ 0.2 and δ ¼ 0.8. (c) The first ten largest eigenvalues λj with ε ¼ 0.2, N ¼ 1000, ωc ¼

ffiffiffiffiffiffiffiffiffiffiffi
κ0=m

p ¼ 1.0.
(d) Different topological classes are classified unsupervisedly, which coincides with the topological transition (δ ¼ 0.5) in the phononic
SSH model. After clustering, we label samples with different colors according to their δ values (δ > 0.5 or δ < 0.5) and confirm the
classification. (e) Disordered phononic SSH chain with random elastic constants, where the bias Δκ ∈ ð−0.75; 0.75Þ and the spatially
dependent random number ηi ∈ ð0; 1Þ. (f) The first ten largest eigenvalues λj with ε ¼ 1.0, N ¼ 1000, ωc ¼ 1.4. (g) Different
topological classes can still be well classified, even if the systems are disordered by noisy couplings. (h) The topological interface mode
emerges between two random phononic chains with opposite signs of Δκ (Δκ ¼ 0.72 and Δκ ¼ −0.54), and L ¼ 40. The field strength
means the absolute amplitude of displacements (more details in the Supplemental Material [51]).
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The unsupervised learning of the quadrupole higher-
order topological insulator (HOTI) is demonstrated in
Fig. 3(a). From the eigenvalues λj associated with the
manifold space fϕjg in Figs. 3(b) and 3(c), we can see that
the N samples can be classified unsupervisedly by the
threshold value δ ¼ 0.67. This value deviates from the
theoretical one δ ¼ 0.5 predicted in Bloch-momentum
space analysis [15,61], due to the finite size effect. As
shown in Fig. 3(d), for the finite system, the topological
transition point δ, where the corner states emerge and the
frequencies become degenerate at the resonant frequency
(ω0, as the effective zero energy), will shift from theoretical
value 0.5 to 0.67. This is because the “corner” states,
although they decay spatially, will interact with each other
when the system size is finite. A perfect phase transition
requires a clear separation of those corner states, which will
be achieved with further increase of δ to 0.67. This finite
size effect of HOTI classification has not been found before
in the Bloch picture for periodic infinite systems. The

unsupervised learning for HOTI in phononic kagome
lattices can be found in the Supplemental Material [51].
Non-Hermitian topological phononics.—The topologi-

cal properties in non-Hermitian systems without time-
reversal symmetry are very important [65–75]. The non-
Hermitian feature can originate from many aspects [76],
such as nonreciprocal coupling [77], nonzero dissipation
bias, or complex on-site potentials [68,78]. Mathematically,
the non-Hermitian system will have complex eigenfrequen-
cies and nonorthogonal eigenvectors [79]. Some Bloch
analyses have been applied for non-Hermitian systems and
found that the exception points play important roles for the
topological origin [68,75,80]. However, the non-Bloch
analysis also states the non-Hermitian skin (surface) effect
and describes the edge modes as well [70–73]. Thus, the
non-Hermitian topological invariants are not clear, in
general, and are still under exploration [70–75,80,81].
Here, we consider the 1D phononic lattice with different

and random dissipation terms due to the nonzero viscosity
τA=B ≠ 0, shown in Fig. 4(a). The dynamic equation can be
written as

m
∂2

∂t2 ai þ τiA
∂
∂t ai ¼ −κðai − bi−1Þ þ κðbi − aiÞ;

m
∂2

∂t2 bi þ τiþ1
B

∂
∂t bi ¼ −κðbi − aiÞ þ κðaiþ1 − biÞ; ð4Þ

(a) (b)

(c) (d)

FIG. 3. The unsupervised clustering of higher-order topological
phononics. (a) The quadrupole higher-order topological models
with coupling strength κ1 ¼ κ0ð1 − δÞ and κ2 ¼ κ0δ, δ ∈ ð0; 1Þ.
The dotted line means the negative counterpart. L ¼ 8 × 8 ¼ 64.
(b) The first ten largest eigenvalues λj with ε ¼ 1.0, N ¼ 500,
ωc ¼ ω0. (c) The structures are well classified into topological
classes, corresponding to different value groups of δ. (d) The
energy levels as a function of δ show that the unsupervised
learning can predict the higher-order topological transition, even
at finite size. (Inset) Quadrupole corner states of the higher-order
topological phononics.

(a) (b)

(d)

(c)

FIG. 2. The unsupervised learning of amorphous topological
phononics. (a) The demonstration of the amorphous structure,
constructed by connecting adjacent centroids of Delaunay tri-
angulation mesh [60]. The system has size L ¼ 130 ∼ 150. The
projection operator is constructed in the coarse-grained space by
averaging displacement field of oscillators in the dotted block
of the original space. The reduced dimension is Lr ¼
10 × 10 ¼ 100. (b) The first ten largest eigenvalues λj with
ε ¼ 0.2, N ¼ 300, ωc ¼ 1.0. (c) Different classes that are
classified unsupervisedly can coincide with different local Chern
numbers v. The numbers of samples for v ¼ ð0;−1; 1Þ are 107,
93, 100, respectively. (d) The chiral edge modes in amorphous
topological phononics with different local Chern number
v ¼ �1. The amplitude and phase of phononic field are repre-
sented by the radius and colors (from blue to red) of the disks.
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where τiA=B is the different and random dissipation viscosity
terms of A=B oscillators for the different ith oscillator.
From the eigenvalues λj associated with the manifold space
fϕjg in Figs. 4(b) and 4(c), we can see the N samples are
clustered into two different groups: Δτ > 0 or Δτ < 0
corresponding to the case τA > τB or τA < τB, which
coincides with the fact that the cases of τA > τB and τA <
τB are topologically distinct. As a result, the topological
interface state emerges at the interface between two
topologically different random non-Hermitian chains with
opposite signs of Δτ, as shown in Fig. 4(d).
To summarize, we have demonstrated the unsupervised

manifold clustering of topological phononics including
spatial randomness, amorphous nonperiodic structures,
and non-Hermitian dissipations. With real-space represen-
tations and their similarity definitions in Eqs. (1) and (2),
one can classify diverse topological phononic systems
within a single unified scheme without a priori knowledge
about topological families or defining topological invari-
ants ad hoc. Unsupervised manifold learning has achieved
efficient nonlinear dimension reductions, which would map
the phononic systems into the manifold space based on

their features in the real space and then cluster them into
different groups associated with different topological prop-
erties. Our work would be used to explore diverse topo-
logical phononics before defining or introducing
topological invariants, which is meaningful for not only
theoretical understandings, but also experimental detec-
tions [82], especially for the noisy random, non-Hermitian,
and out-of-equilibrium open systems and beyond
[72–75,80].
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Note added.—During the review, we became aware of one
related preprint [83], studying unsupervised clusterings of
topological bands in the momentum space.
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