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It has long been observed that the number of weak lines from many-electron atoms follows a power law
distribution of intensity. While computer simulations have reproduced this dependence, its origin has not
yet been clarified. Here we report that the combination of two statistical models—an exponential increase
in the level density of many-electron atoms and local thermal equilibrium of the excited state population—
produces a surprisingly simple analytical explanation for this power law dependence. We find that the
exponent of the power law is proportional to the electron temperature. This dependence may provide a
useful diagnostic tool to extract the temperature of plasmas of complex atoms without the need to assign
lines.
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It has long been known that the number of weak lines
emitted by many-electron atoms in plasmas follows an
intensity power law. In 1982 Learner pointed out this law
for the first time when measuring emission lines from a
hollow cathode lamp containing iron atoms [1]. He
observed that the number density of lines with a given
intensity I, ρIðIÞ, exhibits a power law dependence on I [2],

ρIðIÞ ∝ I−1.50: ð1Þ
He also reported that ρIðIÞ in different wavelength regions
all follow this power law with the same exponent, indicat-
ing an ergodic property of the emission line distribution [1].
This work has stimulated much discussion. A theoretical

study by Scheeline showed that this power law does not
hold for hydrogen atom spectra [3]. In contrast, the
emission spectrum from arsenic, which has a much more
complex electronic structure than hydrogen, shows an
intensity distribution closer to the power law, but with a
different value of the exponent [4]. Bauche-Arnoult and
Bauche reported a simulation with a collisional-radiative
model for a neutral iron atom and demonstrated that
the power law dependence is again reproduced [5]. Their
exponent was 17%–25% smaller than the Learner’s value,
but the reason was not clarified.

Pain recently reviewed this power law dependence prob-
lem and presented a discussion regarding fractal dimension
and quantum chaos [6]. According to his discussion, the line
strength distribution evaluated under the fully quantum-chaos
assumption does not explain Learner’s law. As presented in
his review [6], as well as in the book [7], the origin of this
power law is still not understood, despite almost 40 years
passing since the first report.
In this Letter, we present a surprisingly simple explan-

ation of Learner’s law. We assume local thermal equilib-
rium of the excited state population and an exponential
increase in the level density of complex atoms, which has
been reported in several many-electron atoms and ions
(e.g., [8,9]). Combining these, we show below that the
number of levels with a given population follows a power
law distribution. An assumption of independently and
identically distributed radiative transition rates then directly
gives Learner’s law in the form

ρIðIÞ ∝ I−2kTe=ϵ0−1; ð2Þ

where k is Boltzmann’s constant and Te is the electron
temperature in the plasma. ϵ0 is a scale parameter repre-
senting the level density growth rate against the excited
energy [see Eq. (3) for its definition], which can be
estimated either from the experimentally derived energy
levels or from ab initio atomic structure calculations [9].
Plasma spectroscopy has been developed from simpler

systems, e.g., hydrogen and rare gas atoms. It is known that
comparison between intensity ratios of certain emission
lines and collisional-radiative models provides us with
information about plasma parameters, such as electron
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temperature and density [10–13]. This requires correct line
identifications and accurate atomic data, such as energy
levels, oscillator strengths, and collision cross sections.
However, accurate atomic data for open-shell atoms is
difficult to obtain despite numerous demands for plasma
diagnostics with complex atoms, ranging from laser pro-
duced plasmas for extreme-ultraviolet light sources [14–16]
and heavy-metal-contaminated fusion plasmas [17,18] to
the emissions found after the r-process supernova (kilonova)
[19,20]. Our result, Eq. (2), suggests an advantage of
using intensity statistics for diagnosing plasmas with
many-electron atoms, where accurate ab initio simulations
of such complex spectra are still difficult with currently
available theory and computers.
Next we derive Eq. (2), illustrating our assumptions

using Learner’s example of neutral iron. Figure 1(a) shows
the level density of neutral iron ρEðEÞ, the number of levels
with given excited energy E. This state density is evaluated
from the measured energy levels taken from the Atomic
Spectral Database (ASD) by the National Institute of
Standards and Technology (NIST) [21]. The observed
energy levels are shown by the vertical bars in the figure.
It is well known that the excited level density in the

quantum many-body system increases nearly exponentially.
One simple but common approximation is [9,23,24]

ρEðEÞ ∝ exp

�
E
ϵ0

�
; ð3Þ

where ϵ0 is an atom-specific energy scale, which depends on
the number of active electrons and the number, degeneracy,
and distribution of single particle states in the atom [9].
It can be calculated numerically, derived from experimental
energy levels, or estimated using combinatorics. Dzuba and
Flambaum presented that for open-d- or f-shell atoms the
state density follows Eq. (3), at least below the ionization
energy [9]. For neutral iron, we find Eq. (3) well represents
the level density with ϵ0 ≈ 1.97� 0.04 eV, as indicated by
the solid line in Fig. 1(a). Note that this value is obtained
by the maximum-likelihood estimation of the simulated
energy levels.
Let us assume local thermal equilibrium for the excited

state population. The population in state i with energy Ei is
given as

ni ∝ gi exp

�
−

Ei

kTe

�
; ð4Þ

where gi is the statistical weight of the state i (gi ¼ 2Ji þ 1,
where Ji is the total angular momentum quantum number
of state i). This equilibrium is valid in plasmas with high
electron density and low electron temperature [11]. By
substituting Eq. (3) into Eq. (4), the number of states having
the population n ∼ nþ dn can be written as

ρnðnÞdn ¼ ρEðEÞdE ∝
1

n
ρEðEÞdn ð5Þ

∝
1

n
exp

�
−
kTe

ϵ0
log n

�
dn ð6Þ

∝ n−kTe=ϵ0−1dn; ð7Þ

where dE is the energy interval corresponding to dn, the
relation of which can be obtained from Eq. (4). We assume
in Eq. (6) that the statistical weight is distributed uniformly
over the energy and therefore we omit it from the equation.
This power law originates from the combination of one
exponentially increasing variable and another exponen-
tially decreasing variable. This is a typical mathematical
structure responsible for the emergence of power laws [25].
The emission intensity Iij corresponding to the transition

i → j, where j is the lower state, is proportional to the
upper state population ni, the transition energy cubed
ω3
ij ¼ ðEi − EjÞ3, and the line strength Sij between i and

j states. In many-electron atoms with sufficient basis-state
mixing, i.e., in quantum-chaotic systems, the probability
distribution of Sij can be well approximated as uniform and
independent and can be modeled using the Porter-Thomas
distribution pðSÞ ∝ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi

2πS0S
p Þ expð−S=2S0Þ, with a con-

stant S0 [8,26–29]. This approximation is obtained by

(a)

(b)

FIG. 1. (a) State density of neutral iron against excitation
energy. The orange histogram is computed from the measurement
data compiled in NIST ASD [21]. The measured energy levels
(846 entries) are shown by the vertical bars in the figure. The blue
histogram shows the state density computed from the FAC [22].
The gray line is an exponential dependence, Eq. (3), with
ϵ0 ¼ 1.97 eV, which fits both densities well. (b) Population
distribution computed using collisional-radiative modeling with
Te ¼ 0.34 eV (blue points) and 0.7 eV (red points) and electron
density ne ¼ 1020 m−3. The blue and red bold lines present the
Boltzmann distribution [Eq. (4)] with effective temperatures 0.32
and 0.61 eV, respectively.
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modeling the Hamiltonian with a Gaussian orthogonal
ensemble. As this distribution decays considerably faster
than the power law in the large S limit, we can safely
approximate that Sij is a constant for all pairs of levels.
Therefore, the intensity Iij is approximated as

Iij ∝ ω3
ijS0ni: ð8Þ

A more detailed and precise discussion can be found in the
Supplemental Material [30].
The number of emission lines from state i observed in

photon energy range ω ∼ ωþ dω is proportional to the
number of levels in this energy range, ρEðEi − ωÞdω.
By considering the number of emission lines with a given
intensity range I ∼ I þ dI, we arrive at Eq. (2),

ρIðIÞdI ¼
Z
Ω
ρEðE − ωÞρEðEÞdωdE ∝ I−2kTe=ϵ0−1dI;

where the integration along ω is taken over the observed
photon energy range Ω. Here the variable E is changed to I
based on Eqs. (4) and (8). The factor 2 newly appears in the
exponent of I compared with Eq. (7).
The exponent in Eq. (2) does not depend on Ω. This is

consistent with Learner’s observation that the emission line
density in different wavelength regions all show the power
law dependence with the same exponent [1]. Learner
suggested a relation between the exponent and a constant,
log10

ffiffiffi
2

p
[1]. In contrast, our Letter clearly indicates a

relation with Te and the atom-specific constant ϵ0.
By comparing the exponents in Eqs. (1) and (2), Te in

Learner’s experiment is estimated as ð1.50 − 1Þϵ0=2≈
0.49 eV. Although in Ref. [5] it is claimed that Te higher
than 0.34 eV is not realistic, Te in hollow cathode
discharges reported in literature varies from 0.2 to 3 eV
depending on the cathode element, filler gas pressure, and
discharge current [38,39]. Therefore, 0.49 eV may not be a
surprising value for Te in a hollow cathode discharge.
Bauche-Arnoult and Bauche have used Te ¼ 0.34 eV

for their simulation [5], which is smaller than 0.49 eV. They
obtained −1.392� 0.017 for the exponent [40], which is
consistently smaller in magnitude than Learner’s value.
Our above discussion further provides an explanation for
one argument in their paper, i.e., the higher the electron
temperature, the larger the magnitude of the exponent [5].
We carry out an ab initio simulation of the emission

spectrum of neutral iron with the flexible atomic code
(FAC) [22]. The FAC uses the relativistic Hartree-Fock
method to calculate the electronic orbitals and configura-
tion interaction to approximate the electron-electron inter-
action. The excited state population and the emission line
intensity are evaluated by the collisional-radiative model
implemented in the FAC, where the steady state of
population in the plasma is assumed. For the collisional-
radiative calculation we consider spontaneous emission,
electron-impact excitation, deexcitation, and ionization, as
well as autoionization of levels above the ionization

threshold, as elementary processes in plasmas. These rates
are also calculated by the FAC.
We assume Te ¼ 0.34 eV and the electron density ne ¼

1020 m−3, similar to Bauche-Arnoult and Bauche [5]. We
also perform the simulation with Te ¼ 0.70 eV to observe
the Te dependence of the exponent. Note that in the FAC
computations we do not explicitly adopt either of our two
assumptions, namely, the exponential increase of the state
density and the local thermal equilibrium of the population.
The state density of a neutral iron atom computed by the

FAC is shown in Fig. 1(a) by a blue histogram. It shows a
similar exponential dependence to the measured data, NIST
ASD. Figure 1(b) shows the excited state population
computed by the FAC. Although we do not assume local
thermal equilibrium, the population follows the exponential
function. The exponents for Te ¼ 0.34 and 0.70 eV cases
are estimated by the least-squares method to be 0.32 and
0.61 eV, respectively, which are similar to the electron
temperature. Note that the slight difference between Te
and the exponent in the population is caused by a small
violation of the local thermal equilibrium in plasma [11].
Based on approximate electron-impact excitation and
deexcitation rates, we find that this effective temperature
has a weak ne dependence and approaches Te in the large ne
limit. Even with a smaller electron density, ne ¼ 1017 m−3,
this temperature is expected to be ≈0.7Te for the Te ¼
0.34 eV case. Details can be found in the Supplemental
Material [30].
The histograms in Fig. 2(a) show the state density ρnðnÞ

with given population n (but scaled by n to aid visualiza-
tion). The solid blue and red lines are computed according
to Eq. (7)withTe ¼ 0.32 and 0.61 eV, respectively [the same
temperatures used in Fig. 1(b)]. Their agreement is clear.
Figure 2(b) shows the line intensity distribution ρIðIÞ in

the visible and infrared wavelength range (scaled by I for
visualization). The solid lines show Eq. (2) with Te ¼ 0.32
and 0.61 eV for the two cases. This also agreeswith the above
discussion, particularly in the first three orders studied by
Learner.
In Eq. (2), we show that the exponent exclusively

depends on Te and ϵ0, but not on other atomic data, such
as level energies, transition rates, and collision cross
sections. The only value we require, ϵ0, is known to be
accurately calculated with several atomic structure pack-
ages [9]. Therefore, Eq. (2) may be useful as a quick
diagnostic method for many-electron atom plasmas.
As Eq. (2) is scale free for I, the power law dependence is

not affected by the system’s sensitivity (see the Supplemental
Material for details [30]). Thus, no system calibration is
required for estimation of Te. We only need to know the
dominant (in terms of the number of emission lines) atom in
the plasma.
We have applied this approach to the emission spectra

measured for thorium plasmas. Figures 3(a) and 3(b) show
spectra measured from a thorium-argon hollow cathode
plasma with 75 [41] and 20 mA discharge current [42],
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respectively, with a 1-m Fourier transform spectrometer.
The original data can be downloaded from the Kitt Peak
National Observatory website [43]. Only the spectra in the
510–560 nm wavelength range are shown and analyzed in

this Letter. Dots in each panel show the line centers and
peaks detected in the two spectra.
Although not all emission lines in these spectra have

been identified, we assume that most of the lines are from
neutral thorium. We compute ρIðIÞ from all line intensities
in the wavelength range [Fig. 3(c)]. The two histograms
generated from the spectra show a power law distribution.
ρIðIÞ for the higher current discharge shows a steeper slope.
We estimate the exponent of these distributions using the

maximum-likelihood method. The optimized distributions
are shown by solid lines (and their 2-σ uncertainty by colored
bands) in Fig. 3(c). They fit both histograms. Estimated
values of the exponent are 1.71� 0.03 and 1.64� 0.03 for
the 75 and 20 mA disharges, respectively. From Eq. (2) and
the value ϵ0 ≈ 0.68 eV for neutral thorium by Dzuba and
Flambaum [9], electron temperatures for these plasmas are
estimated as 0.24� 0.01 and 0.21� 0.01 eV, respectively.
A higher Te value is estimated for the higher current
discharge. Although the positive current dependence of the
temperature is not trivial [38], this dependence qualitatively
supports our model. Because there are no radiative rates
reported for neutral thorium, it is difficult to estimate Te for
this plasma by conventional methods. To our knowledge, the
above procedure is the only one available to estimate Te for
thorium plasmas.
Although there are significant demands to diagnose

plasmas with many-electron atoms, quantitative compari-
son with an ab initio computer simulation model is not yet
accurate enough, because of the unavailability of accurate
atomic data. Our result suggests a possibility of plasma
diagnostics that requires only the energy level statistics and
the emission intensity statistics. Although the validity of the
local thermal equilibrium assumption should be investigated
further, this may open the door to a new statistical plasma
spectroscopy.

FIG. 3. Emission spectra observed from thorium-argon hollow cathode plasmas (a) with 75 mA discharge current [41] and (b) with
20 mA discharge current [42]. Dots indicate the centers and intensities of emission lines detected in each spectrum. (c) Intensity
distributions computed from the spectra in (a) and (b). Straight lines show the optimized power law distribution by maximum-likelihood
method. The exponents for the 75 and 20 mA discharges are 1.71� 0.03 and 1.64� 0.03, respectively.

(a)

(b)

FIG. 2. (a) State density distribution ρnðnÞ, multiplied by n to
aid visualization. The blue histogram presents the computed
result with Te ¼ 0.34 eV, while red presents the result with
Te ¼ 0.7 eV. Both distributions follow the power law. (b) Density
distribution of emission lines ρIðIÞ, computed by the FAC. Again,
the vertical values are multiplied by I to aid visualization. The
bold lines in (a) and (b) are not fit results but theoretical models
[Eqs. (7) and (2), respectively] with the same electron temper-
atures used in Fig. 1(b).
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In summary, we have presented a simple explanation of
Learner’s law, where the histogram of the emission line
intensities from many-electron atoms follows a power law.
We observed that the exponent is analytically represented
with Te and ϵ0. A similar discussion should also be
applicable to other fermionic many-body systems as long
as the two assumptions are satisfied. Although as yet there
are no reports about the emission statistics except for many-
electron atoms, it is interesting to investigate other systems,
such as heavy nuclei. This is left for future study.
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