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We present experiments to study the relaxation of a nanoscale cylindrical perturbation at one of the two
interfaces of a thin viscous freestanding polymeric film. Driven by capillarity, the film flows and evolves
toward equilibrium by first symmetrizing the perturbation between the two interfaces and eventually
broadening the perturbation. A full-Stokes hydrodynamic model is presented, which accounts for both the
vertical and lateral flows and which highlights the symmetry in the system. The symmetrization time is
found to depend on the membrane thickness, surface tension, and viscosity.
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Surface tension will smoothen interfacial perturbations
on a thin liquid film, since the curvature of the perturbation
profile induces a Laplace pressure that drives flow. This
capillary-driven leveling causes the brush strokes on paint
to flatten, or the spray of small droplets to form a uniform
film. Such flows have been studied in detail and much of
the framework is provided by the lubrication theory (a
simplified version of the Navier-Stokes equations appro-
priate for laminar thin-film flow), where one can assume
that flow in the plane of the film dominates and that the
velocity vanishes at the solid-liquid interface [1,2].
Freestanding liquid films do not support a shear-stress at
both liquid-air interfaces, which modifies the boundary
conditions and results in a different phenomenology [1].
These boundary conditions arise in biological membranes
[3], soap films [4–9], liquid-crystal films [10–12], frag-
mentation processes [13], or energy-harvesting technolo-
gies [14].
The dynamics of liquid sheets has been studied exten-

sively [15,16] and shows similarities with the mechanics of
elastic plates. The evolution can be described with two
dominant modes, which are the stretching and bending
modes associated with linear momentum and torque
balances. At macroscopic scales, a viscous sheet experi-
ences bending instabilities such as wrinkling [17–20] and
folding [21] when submitted to compression. Such viscous
buckling phenomena occur in tectonic-plate dynamics
[22,23] and industrial float-glass processes [24–27].
In thin freestanding films, surface tension is dominant

and stabilizes the interfaces against buckling [15]. Most
theoretical models in this context assume that the interfaces
are mirror symmetric and thus focus on the stretching
mode, also called the symmetric mode. This approach is

employed to study the rupture dynamics of films in the
presence of disjoining forces that destabilize long waves in
thin films [28–35]. Using nanometric freestanding poly-
styrene (PS) films, Ilton et al. observed that a film with
initially asymmetric interfaces symmetrized over short
timescales [36]. This symmetrization was attributed to
flow perpendicular to the film, but the dynamics was not
accessible experimentally.
Here we study the viscocapillary relaxation of a nano-

scale cylindrical perturbation initially present at one inter-
face of a thin freestanding PS film. Both the symmetric
(viscous stretching) and antisymmetric (viscous bending)
modes are probed with experiments (Fig. 1). Atomic force
microscopy (AFM) is used to obtain the profiles of the top
and bottom interfaces [Fig. 1(a)]. A full-Stokes flow linear
hydrodynamic model is developed to characterize the
dynamics of the two modes. To provide intuition for the
energy dissipation, we turn to the schematic excess surface
energy as a function of time, shown in Fig. 1(d). Initially,
the top interfacial profile, denoted hþ, has a high excess
energy due to the additional interface that forms the
perturbation, while the bottom interfacial profile h− is flat
and has no excess surface energy. The excess energy
resulting from the perturbation drives flow that is mediated
by viscosity η. As the film evolves, the total energy
dissipates as the excess interface decreases. With decreas-
ing global energy, the symmetrization process requires
energy transfer from the top interface to the bottom,
dominated by vertical flow. Once both interfaces are
symmetric, they relax in tandem, dominated by lateral
flow. Remarkably, the temporal evolution of the interfacial
profiles, when appropriately decomposed into their sym-
metric and antisymmetric components, obey power laws.
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We construct freestanding films with a nanometric
perturbation by stacking a film with small cylindrical pores
on a second thicker film that is intact, following a method
similar to that previously described [36,37]. This process
results in a film with a cylindrical hole at one interface. PS
with molecular weight Mw ¼ 183 kg=mol (Polymer
Source, polydispersity index ¼ 1.06) is dissolved in tol-
uene (Fisher Scientific, Optima) with concentrations of 2%
and 7.5% by weight. Films are prepared by spin coating
from solution onto freshly cleaved mica (Ted Pella) and
annealed at 130 °C in vacuum (1 × 10−5 mbar) for 24 h.
The films have thicknesses h1 ¼ 530 and h2 ¼ 80 nm, as
measured using ellipsometry (Accurion, EP3). The free-
standing films are prepared in a two-step process inspired
by Backholm et al. [37]. Films are floated from mica
substrates onto the surface of ultrapure water
(18.2 MΩ cm) and picked up on a thin circular steel washer
(thickness ¼ 0.1 mm, AccuGroup), creating a freestanding
film supported only at the edges of the washer. The thicker
film, with h1 ¼ 530 nm, is picked up on a washer with an
internal diameter of 3 mm and briefly heated above the
glass-transition temperature Tg ≈ 100 °C on a hot stage
(Linkam, UK), resulting in a smooth, taught film. Similarly,
the thinner film with h2 ¼ 80 nm is transferred from the
water to a washer with an internal diameter of 5 mm. This
film is heated (100 °C=min) to 125 °C under a microscope
for several seconds and holes are nucleated on small defects
in the film, which grow with time [34,38–40]. When the
holes become visible, the film is quenched to room temper-
ature, resulting in a freestanding film with randomly distrib-
utedholesofdiameter1–10 μm.The twofilmsare thenplaced
in contact and adhere through van der Waals forces, and the
larger diameterwasher canbe removed.Thisprocess results in
a freestanding film of thickness h0 ¼ h1 þ h2, with cylindri-
cal holes of depth h2 [Figs. 1(a) and (b)].
The films are annealed on the hot stage at T ¼ 130 °C

and covered with a coverslip to ensure a uniform temper-
ature with η ≈ 1.1 × 108 Pa s and surface tension γ ≈
30 mJ=m2 [41]. After some annealing time, the film is

quenched to room temperature, thus returning to the glassy
state where flow becomes arrested. The surface profiles of
three holes in the same film are then measured after each
annealing step using AFM (Bruker, Multimode). Since the
film is freestanding and has two polymer-air interfaces,
both the top and bottom profiles are measured. The angular-
averaged profiles are extracted at each time and provide a
cross section of the film as it evolves (Fig. 2).
Initially, the film has different curvature gradients at the

top and bottom interfaces, resulting in pressure gradients in
vertical and lateral directions. The initial response of the
film in the vicinity of the hole is for the bottom interface to
buckle downward, forming a small (∼10 nm) elastic bump.
This feature is not a result of a viscoelastic response to
interfacial forces [42], as this would generate an opposite
displacement. We speculate that this feature is the result of
residual stresses associated with sample preparation: it is
known that during hole formation the shear-strain rate near
the rim of the hole perturbs polymer chains from equilib-
rium [39,40]. Upon adhering the two films, the nonequili-
brium chains in the rim can impart a tension along the rim

FIG. 2. AFM profiles of the top and bottom interfaces of a
freestanding hole with h2 ¼ 80 nm, h0 ¼ 610 nm, and r0 ¼
4.2 μm (Fig. 1), at various annealing times texp as indicated.
An “elastic bump” is seen at texp ¼ 1 min due to the residual
stresses in the film from the sample preparation. The viscous
model takes the profiles at 5 min as initial profiles, in order to
ignore any prior elastic effect.

(a) (c)(b) (d)

FIG. 1. (a) AFM images of sample with surface perturbation with initial radius r0 ≈ 6.2 μm and depth h2 ≈ 80 nm (top) and after
500 min of annealing (bottom). (b) Schematic of an initial cylindrical hole of depth h2 and radius r0, on one side of a polystyrene
freestanding film, which evolves toward symmetric. (c) Symmetric-asymmetric decomposition of the interfacial profiles. A symmetric
profile leads to lateral flow, while an antisymmetric one leads to vertical flow. (d) Schematic of the evolution of the excess surface
energy. The top and bottom surface energies equalize before vanishing in tandem on larger timescales.
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acting to compress and buckle the sample. As the film is
annealed, the elastic bump relaxes on a timescale ∼5 min,
which is similar to the macromolecular relaxation time for
PS (the reptation time at T ¼ 130 °C is ∼13 min [43]).
After relaxation of the bump, the flow depends on

capillarity and viscosity. First, there is vertical flow to
equilibrate the Laplace pressures and symmetrize the top
and bottom interfaces. Indeed, two symmetric interfacial
profiles are observed at times larger than ∼200 min.
Subsequently, the symmetric interfaces evolve in tandem
through lateral flow and dissipate the excess surface energy
[30]. The film is annealed for ∼2000 min before rupturing.
We now turn to a theoretical description. The polymer is

assumed to be a Newtonian fluid with viscosity η. We
introduce cylindrical coordinates ðr; zÞ, as well as the
Hankel transforms [44] of the velocity field u⃗ðr; z; tÞ ¼
ður; uzÞ and of the interfacial profiles h�ðr;tÞ: ũrðk; z; tÞ ¼R
∞
0 drrurðr; z; tÞJ1ðkrÞ, ũzðk;z;tÞ¼

R
∞
0 drruzðr;z;tÞJ0ðkrÞ,

and h̃�ðk; tÞ ¼
R
∞
0 drrh�ðr; tÞJ0ðkrÞ, where t is time,

and the Ji are the Bessel functions of the first kind with
indices i ¼ 0, 1. Injecting these into the steady Stokes
equations, we find ∂3

z ũr þ k∂2
z ũz − k2∂zũr − k3ũz ¼ 0 and

∂zũz þ kũr ¼ 0, which gives

ũr ¼ −
1

k
ðkAþ kzCþDÞ sinhðkzÞ

−
1

k
ðkBþ kzDþ CÞ coshðkzÞ; ð1aÞ

ũz ¼ ðAþ zCÞ coshðkzÞ þ ðBþ zDÞ sinhðkzÞ; ð1bÞ

where AðtÞ, BðtÞ, CðtÞ, and DðtÞ are integration constants.
The depth of the hole is assumed to be small in comparison
with the thickness of the film, which is valid for the
experiments, and we linearize the problem by writing the
profiles ash� ¼ �h0=2þ δh�, where the perturbations δh�
are small compared to the film thickness h0. We assume no-
shear-stress boundary conditions at both fluid-air interfaces
and neglect nonlinearities from the scalar projections of the
normal and tangential vectors to the interface, which gives

�
�kAþ C

kh0
2

�
sinh

�
kh0
2

�

þ
�
kB�D

kh0
2

�
cosh

�
kh0
2

�
¼ � γk2

2η
δ̃h�; ð2aÞ

�
kA� C
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2
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�
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�
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2

�

þ
�
�kBþD

kh0
2

� C
�
sinh

�
kh0
2

�
¼ 0: ð2bÞ

Finally, we invoke the linearized kinematic conditions
∂th̃� ¼ ũzðk; z ¼ �h0=2; tÞ and obtain a set of coupled
linear differential equations. The symmetric-antisymmetric

decomposition, through h̃sym ¼ δh̃þ − δh̃− and h̃anti ¼
δh̃þ þ δh̃− [see Fig. 1(c)], appears as the natural modal
decomposition for this system. These two modes relax
independently to equilibrium, with distinct decay rates
λsym and λanti, since

∂th̃sym ¼ −
γk
η

sinh2ðkh0
2
Þ

sinhðkh0Þ þ kh0
h̃sym ¼ −λsymh̃sym; ð3aÞ

∂th̃anti ¼ −
γk
η

cosh2ðkh0
2
Þ

sinhðkh0Þ − kh0
h̃anti ¼ −λantih̃anti: ð3bÞ

The dimensionless decay rates are plotted in Fig. 3 as a
function of the dimensionless wave number kh0. For
each rate, two asymptotic behaviors can be distinguished.
At large kh0, both rates exhibit the same asymptotic
behavior: λðkÞ ∼ γk=η. At small kh0, the symmetric rate
becomes identical to the one in the symmetric long-wave
freestanding film model: λsym ∼ γh0k2=ð8ηÞ [30,36], and
thus Eq. (3) reduces to a heatlike equation in Hankel space,
with a diffusion coefficient γh0=ð8ηÞ. In the same limit, the
antisymmetric rate has a different scaling law:
λanti ∼ 6γ=ðηh30k2Þ. Therefore, long waves are quickly
damped for the antisymmetric mode. We note that λanti
has a minimum at k ≃ 3.28=h0, corresponding to a slowest
mode, which sets the relaxation dynamics.
The model assumes a Newtonian fluid and must be

compared to experimental profiles corresponding to
annealing times longer than the polymeric relaxation time.
Thus, we take the experimental profiles at texp ¼ 5 min as
the initial conditions for the model (Fig. 2). Equations (3a)
and (3b) are solved, yielding

h̃sym=antiðk; tÞ ¼ h̃sym=antiðk; 0Þ exp½−λsym=antiðkÞt�; ð4Þ
where t ¼ texp − 5 min. The symmetric and antisymmetric
modes are shown in Fig. 4 and reveal a qualitative

FIG. 3. Dimensionless decay rates of the symmetric and
antisymmetric modes [Eqs. (3a) and (3b)] as a function of the
dimensionless wave number. The slope triangles indicate power-
law exponents.
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agreement between theory and experiment. Notably, the
symmetric mode exhibits a self-similar behavior when
plotted (not shown) as a function of the variable
ðr − r0Þ=t1=2. This result for freestanding films is to be
compared to the capillary leveling of a cylindrical hole
in a film supported on a substrate, which is self-similar in
ðr − r0Þ=t1=4 [37]. In contrast, the antisymmetric mode
vanishes, on a timescale on the order of ∼200 min,
resulting in top and bottom interfacial profiles that are
mirror symmetric, as observed in Fig. 2. The long waves
are damped more quickly than the short ones, in agreement
with the limiting scaling behaviors of λantiðkÞ (Fig. 3).
A measure of proximity to equilibrium lies in

the excess capillary energy, which is proportional to the
excess surface area S with respect to a flat film Si ¼
2π

R
∞
0 drrð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rhiÞ2

p
− 1Þ, where i can refer to þ, −,

sym, or anti, depending on the profile or mode in question.
In the small-slope limit (valid at texp > 5 min), Si≃
π
R
∞
0 drrð∂rhiÞ2. Figure 5(a) shows the excess surface

areas of the top and bottom, normalized by the initial
value, as a function of dimensionless time γt=ðh0ηÞ for
three holes of different initial radii, r0 ¼ 2.3, 4.2, and
6.2 μm on the same film. The trends are consistent with the
intuition provided by Fig. 1(d), and the theoretical curves
are in excellent agreement with the experimental data,
which validates the hydrodynamic model. We further see
that the top interface, which has an initially high excess
surface area, exchanges energy with the bottom one,
causing the excess surface area of the latter to initially
increase. This happens through vertical flow, a process that
continues until the top and bottom interfaces are mirror
symmetric at γt=ðh0ηÞ ∼ 0.5, after which the excess surface
areas of both interfaces are equal. At later times, the surface
areas decrease as S ∝ t−1=2 because of the self-similar

properties of the heatlike equation that governs the sym-
metric mode.
One can define and plot the symmetric and antisym-

metric surface areas Ssym and Santi as functions of the
dimensionless time [Fig. 5(b)]. The symmetric mode
exhibits a long term Ssym ∝ t−1=2 scaling, as a result of
lateral flow. In contrast, the vertical flow in the antisym-
metric mode dissipates energy more quickly, with a time-
scale ∼ηh0=γ corresponding to the symmetrization time.
The experiments reveal that this symmetrization time does
not depend on the initial radius of the hole and is set by the
dynamics of the slowest relaxation mode, i.e., the Fourier-
Bessel mode k at which λantiðkÞ is minimal (Fig. 3) (the data
at long times for the antisymmetric mode deviate from
theory because of limitations in measuring a vanishing
excess surface area).
We note that the governing equation of the antisym-

metric mode is 1
6
ηh30∂t∇2hanti ¼ γhanti in the long-wave

limit. Upon taking the Laplacian of this expression, we
recover on the right-hand side the Laplace pressure δP ¼
γ∇2hanti across the film. Then, the midplane line H ¼
hanti=2 follows the equation 1

3
ηh30∇4∂tH ¼ δP. This equa-

tion corresponds to the torque balance in the liquid film
[15,26,27] and is the viscous analog of the Föppl–von
Kármán equation for an elastic membrane in pure bend-
ing, where the bending modulus is replaced by ηh30=3

experiment

theory

symmetric antisymmetric

(a) (b)

(d)(c)

FIG. 4. (a) Symmetric and (b) antisymmetric modes of the
experimental (angular-averaged) profiles for various times. The
colors correspond to the same times as in Fig. 2. (c) Symmetric
and (d) antisymmetric modes of the theoretical profiles, accord-
ing to Eq. (4), for various times, and with the experimental
profiles at texp ¼ 5 min as the initial conditions (t ¼ 0).

(a)

(b)

FIG. 5. Dimensionless excess surface area as a function of
dimensionless time. The experimental data for three different
holes are shown with different marker symbols, as indicated. The
corresponding theoretical data are shown with different line
styles, as indicated (fit parameter γ=η ≈ 4.6 × 10−5 μm=s [45]).
(a) The top and bottom interfacial profiles. (b) The symmetric and
antisymmetric modes. The slope triangles indicate power-law
exponents.
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and the deflection field is replaced by the deflection
rate ∂tH.
In conclusion, we have reported on the symmetrization

dynamics of cylindrical holes in freestanding polymer
films. The topographies of both interfaces of the films
were measured using AFM at various times, to track the
evolution while they were annealed above the glass-
transition temperature. The films were found to undergo
a rapid symmetrization process in order to equilibrate the
Laplace pressures of the two liquid-air interfaces. This
process transfers excess surface energy between the two
interfaces and eventually results in mirror-symmetric pro-
files on both sides of the film. A full-Stokes flow linear
hydrodynamic model was developed and shown to be
consistent with the observations. The model revealed the
important roles of two modes, which differ by their
symmetry with respect to the midplane of the film. The
antisymmetric mode is associated with vertical flow, driven
by the pressure gradient across the film, and exhibits faster
dynamics than the symmetric mode, associated with lateral
flow. The vertical symmetrization was found to occur on a
universal timescale ηh0=γ, while the symmetric mode
dominates at later times. Surprisingly, the evolutions of
the interfacial profiles, when decomposed into the sym-
metric and antisymmetric components, are found to obey
power laws, with the decrease in surface area of the
symmetric mode scaling as t−1=2, analogous to the heat
equation.
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