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The ringdown and shadow of the astrophysically significant Kerr black hole (BH) are both intimately
connected to a special set of bound null orbits known as light rings (LRs). Does it hold that a generic
equilibrium BH must possess such orbits? In this Letter we prove the following theorem. A stationary,
axisymmetric, asymptotically flat black hole spacetime in 1þ 3 dimensions, with a nonextremal,
topologically spherical, Killing horizon admits, at least, one standard LR outside the horizon for each
rotation sense. The proof relies on a topological argument and assumes C2 smoothness and circularity, but
makes no use of the field equations. The argument is also adapted to recover a previous theorem
establishing that a horizonless ultracompact object must admit an even number of nondegenerate LRs, one
of which is stable.
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Introduction.—The second decade of the 21st century
will be celebrated as the dawn of precision strong gravity.
New observational data is testing, in particular, the true
nature of astrophysical black holes (BHs). Both gravita-
tional wave observations [1,2], notably through the ring-
down phase, and electromagnetic observations, in
particular through the shadow imaging [3–5], are expected
to provide hitherto inaccessible information on the BH
spacetime geometry.
The ringdown and shadow observables are both inti-

mately connected to a special set of bound null orbits for
test particles [6,7]. When planar, these orbits are known as
light rings (LRs). They are an extreme form of light
deflection, such that the path of light closes over itself.
In the general nonplanar case these light paths are dubbed
fundamental photon orbits (FPOs) [8]. For a spherical BH,
such as the Schwarzschild solution, all FPOs are LRs. This
is not so for axisymmetric, but nonspherical, BHs. In the
special case of the Kerr spacetime, the FPOs are known as
spherical photon orbits [9], all of which are unstable (in the
radial direction) outside the horizon and reduce, in two
appropriate limits, to LRs. The latter correspond to equa-
torial photon orbits which are corotating or counterrotating
with the Kerr horizon.
The close connection between LRs and the aforemen-

tioned key observables raises the following question: Does
an equilibrium BH spacetime always possess LRs? This is
the case for the paradigmatic electro-vacuum BHs of
General Relativity (GR), but can one safely extrapolate
to BHs with generic matter contents or modified gravity?
In this Letter we shall provide a generic and robust

answer to these questions using a topological argument.
Concretely, under reasonable assumptions, we shall estab-
lish the following theorem: A stationary, axisymmetric,
asymptotically flat, 1þ 3 dimensional BH spacetime,

ðM; gÞBH, with a nonextremal, topologically spherical
Killing horizon,H, admits at least one standard LR outside
the horizon for each rotation sense.
The spacetime.—We assume an equilibrium BH space-

time under the conditions of the last paragraph. No
assumption is made on the field equations ðM; gÞBH solves.
This spacetime possesses two Killing vectors fξ; ηg,
associated, respectively, to stationarity and axisymmetry.
Asymptotic flatness implies fξ; ηg must commute [10].
Then, coordinates (t;φ) adapted to the Killing vectors
ξ ¼ ∂t, η ¼ ∂φ can be chosen. In addition, we assume that
the metric is at least C2-smooth on and outside H, and
circular. The latter, together with asymptotic flatness,
implies the spacetime admits a 2-space orthogonal to
f∂t; ∂φg—see, e.g., Theorem 7.11 in Ref. [11]. This means
the metric g possesses a discrete symmetry ðt;φÞ →
ð−t;−φÞ [12].
In the orthogonal 2-space one can introduce spherical-

like coordinates (r, θ). The sections ofH are assumed to be
topologically spherical. A gauge choice guarantees the
horizon is located at a constant (positive) radial coordinate
r ¼ rH. The polar coordinate θ is chosen to be always
orthogonal to r. In such a gauge, grθ ¼ 0, grr > 0 and gθθ >
0 outside H. One can further require that ðr; θÞ reduce to
standard spherical coordinates in the asymptotically flat
limit r → ∞. The coordinates’ range is then, outside the
horizon, r ∈ ½rH;∞½, θ ∈ ½0; π� with θ ¼ f0; πg at the
rotation axis, φ ∈ ½0; 2π½ and t ∈� −∞;þ∞½. Outside H,
causality requires gφφ ≥ 0. The metric, which has a
Lorenzian signature ð−;þ;þ;þÞ, thus reads ds2¼gttdt2þ
2gtφdtdφþgφφdφ2þgrrdr2þgθθdθ2.
The Killing horizon.—The existence ofH means there is

a Killing vector field, χ ¼ ∂t þ ωH∂φ, (ωH ¼ const) that is
null on H, ðχμχμÞjH ¼ 0. Then, χ is the horizon null
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generator. For stationary BHs, one can further introduce a
(positive) constant quantity on H, the surface gravity κ,
defined via the following relation computed at the
horizon ½∇μðχ2Þ ¼ −2κχμ�jH. Taking μ ∈ ft;φg, one
obtains 0 ¼ ðgμt þ gμφωHÞjH. This implies that ωH ¼
−ðgtφ=gφφÞjH, for the horizon angular velocity ωH, and
DjH ¼ 0, where we have definedD≡ ðg2tφ − gttgφφÞ. Thus,
D vanishes on H; in fact, it is positive outside the horizon
and away from the axis [13].
LRs and a topological charge.—For diagnosing the

occurrence of LRs in ðM; gÞBH, one must consider the
null geodesic flow. Following Ref. [14], LRs are identified
by considering the effective potentials on the orthogonal
2-space, H�:

H�ðr; θÞ≡ −gtφ �
ffiffiffiffi
D

p

gφφ
: ð1Þ

LRs are critical points of H� [15]; a LR obeys either
∂μHþ ¼ 0 or ∂μH− ¼ 0 or both simultaneously (e.g., for
static spacetimes) [16]. The � sign is typically associated
with the two possible rotation senses (see Supplemental
Material [17], Sec. I).
We can associate a topological charge to LRs. First,

introduce a field v ¼ ðvr; vθÞ as a normalized gradient
of H�:

vr ≡ ∂rH�ffiffiffiffiffiffi
grr

p ; vθ ≡ ∂θH�ffiffiffiffiffiffi
gθθ

p : ð2Þ

If follows that ∂μH�∂μH� ¼ v2r þ v2θ ≡ v2. Hence, in
terms of v, a LR occurs if and only if v ¼ 0 ⇔ v ¼ 0.
Second, define an angle Ω such that vr ¼ v cosΩ,

vθ ¼ v sinΩ. Then, Ω together with the “norm” v, param-
eterizes the auxiliary 2-space spanned by v, denoted V.
Third, in the physical orthogonal 2-space ðr; θÞ, consider

a simple closed curve C, that is piecewise smooth and
positive oriented. Since C is closed, the angle Ω after a full
revolution must be the same, modulo 2π. Hence,

I
C
dΩ ¼ 2πw; w ∈ Z: ð3Þ

In the physical ðr; θÞ space w counts the winding number of
v as C is circulated in the positive sense. WhenC encloses a
single (nondegenerate [14,18]) LR, the integer w is the
topological charge of the LR. Indeed, the curve C, in the
physical ðr; θÞ space, defines a curve C̃ in V, via Eq. (2). In
V, w is the winding number of C̃ around the origin (v ¼ 0),
which corresponds to a LR. Thus, in V, w constitutes a
well-defined topological quantity [19]: deforming C̃ with-
out crossing the origin does not change w. Consequently, in
the physical ðr; θÞ space, deforming C without crossing a
LR does not change w.

Figure 1 exhibits v for a Schwarzschild BH. It illustrates
that w ¼ −1 (w ¼ 0) for any contour that encloses (does
not enclose) the Schwarzschild LR. In general, if C
encloses a single saddle point (maximum or minimum)
of the potential H�ðr; θÞ, then w ¼ −1 (w ¼ þ1). A LR
with w ¼ −1 (w ¼ þ1) is dubbed standard (exotic). LRs in
Schwarzschild and Kerr are standard. Furthermore, for any
C, the total w is the sum of the individual LR charges within
C. In particular, if there are no LRs within C, then w ¼ 0.
Our task is to show that the total LR topological charge

in the region outside a BH (under the assumptions stated
above) is w ¼ −1, regardless of choosing Hþ or H−. This
implies that at least one standard LR must exist within that
region, for each rotation sense of the BH, and establishes
the theorem. To achieve this we must select an appropriate
contour.
The contour.—For our generic ðM; gÞBH, we define a

contour C that encompasses a subregion I of the orthogo-
nal 2-space exterior to the horizon. Then, taking appro-
priate limits, I becomes the full exterior region.
The region I is shown in Fig. 2 and it is defined as

r0 ≤ r ≤ R and δ ≤ θ ≤ π − δ. The constants fr0; R; δg are
such that rH < r0 ≪ R and 0 < δ ≪ 1.
I is the region enclosed by the curve C (see Fig. 2),

which is defined as the union of four line segments:
fr¼ R;δ ≤ θ ≤ π − δg ∪ fθ¼ π − δ; r0 ≤ r ≤ Rg ∪ fr¼ r0;
δ ≤ θ ≤ π − δg ∪ fθ¼ δ; r0 ≤ r ≤ Rg.

FIG. 1. The red arrows represent v (normalized to unity),
defined from Eq. (2) with Hþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2=r
p

=ðr sin θÞ, on a
portion of the ðr; θÞ plane for the Schwarzschild BH with unit
mass, in standard coordinates. The LR sits at r ¼ 3, θ ¼ π=2.
Circulating the contour C1 (or any contour that encloses the LR)
anticlockwise, v winds once clockwise (follow the blue arrows
1 → 10). Thus w ¼ −1. By contrast, circulating the contour C2

(or any contour that does not enclose the LR) anticlockwise, v has
no winding. Thus w ¼ 0. Observe two important properties that
will be general. (1) v becomes vertical at θ ¼ 0 (θ ¼ πÞ and
downwards (upwards) directed; (2) vr is positive (negative) as the
horizon (asymptotic infinity) is approached. The signs are
reversed for H−.
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The topological charge of I is computed from Eq. (3),
decomposed as 2πwI ¼ I1 þ I3 þ I2 þ I4, where

I1¼
�Z

π−δ

δ

dΩ
dθ

dθ

�
r¼R

; I2 ¼
�Z

r0

R

dΩ
dr

dr

�
θ¼π−δ

; ð4Þ

I3 ¼
�Z

δ

π−δ

dΩ
dθ

dθ

�
r¼r0

; I4 ¼
�Z

R

r0

dΩ
dr

dr

�
θ¼δ

: ð5Þ

To obtain the total topological charge of the exterior
region, we take first δ → 0 (axis limit), and only then r0 →
rH (horizon limit) and R → þ∞ (asymptotic limit):

w ¼ lim
R→þ∞

lim
r0→rH

ðlim
δ→0

wIÞ: ð6Þ

These limits must be taken with care, as we now discuss.
Axis limit.—The axis is the set of points for which

gφφ ¼ η · η ¼ 0 ¼ η · ξ ¼ gtφ. To approach the axis, intro-
duce a local coordinate ρ, defined as ρ≡ ffiffiffiffiffiffiffigφφ

p (recall
gφφ > 0 outsideH). Clearly, dρ=dθ is positive (negative) as
θ → 0 (θ → π). Then, consider a small ρ expansion close to
the axis:

gφφ ¼ ρ2; gtφ ≃ boρn þOðρnþ1Þ; ð7Þ

gtt ≃ g0tt þOðρÞ; gρρ ≃ g0ρρ þOðρÞ; ð8Þ

where n ∈ N and some constants were introduced. By
assuming C2 smoothness and regularity (e.g., a nondiverg-
ing Ricci scalar) close to the axis gφφ cannot go to zero
faster than gtφ in the axis limit (see Supplemental Material
[17], Sec. II and Ref. [20]). Then 2 ≤ n and ρ2n ≪ ρ2. It
follows from the definition of D that

ffiffiffiffi
D

p
≃ ρ

ffiffiffiffiffiffiffiffi
−g0tt

p
.

Hence, from Eq. (1):

H� ≃�
ffiffiffiffiffiffiffiffi
−g0tt

p
ρ

: ð9Þ

One can now estimate v from Eq. (2). In particular, using
gρρdρ2 ≃ gθθdθ2 at zeroth order in ρ:

vθ ≃ sign

�
dρ
dθ

� ∂ρH�ffiffiffiffiffiffigρρ
p ∼ ∓ sign

�
dρ
dθ

�
1

ρ2
: ð10Þ

Since vθ∼ρ−2 and vr∼ρ−1, then v2θ≫v2r , and so v ≃ jvθj.
Hence as ρ → 0 one obtains vθ=v →∓ signðdρ=dθÞ.
Consequently,

Ω ¼ arcsin

�
vθ
v

�����
0;π

→

��π=2 for θ → π

∓ π=2 for θ → 0:
ð11Þ

The axis limit is limδ→0 C, which implies ρ → 0 along
the integration paths of fI2; I4g. Thus, the bottom line is
that Ω becomes constant along the integration path.

FIG. 2. Representation of the contour C (which encloses I) on
the ðr; θÞ plane. The curve C has positive orientation and it is
composed by four line segments.

FIG. 3. Top: The red arrows represent v, defined from Eq. (2)
with Hþ ¼ 1=ðr sin θÞ, on a portion of the ðr; θÞ plane for flat
spacetime, in standard coordinates. There are no LRs. Observe
the key difference with respect to Fig. 1. Here, vr is negative
(positive for H−) as the left boundary of the domain is
approached, which is now a regular origin at r ¼ 0, rather than
a horizon. Any contour C will have w ¼ 0. Bottom: v (defined
from Hþ) for a horizonless ultracompact object (rotating boson
star). There are two LRs with opposite topological charge. By
circulating the contour C1 (C2) anticlockwise, v winds once in the
positive (negative) sense (follow the numbered blue arrows). By
contrast, after a full circulation along C3, which encompasses
both LRs, v winds up zero times (w ¼ 0).
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Consequently, the contribution of fI2; I4g to w vanishes
as δ → 0.
This result can be interpreted as follows. In a generic BH

spacetime, the arrows analogous to those in Fig. 1 become
vertical along fI2; I4g as δ → 0, directed upwards (down-
wards) at θ ¼ π and downwards (upwards) at θ ¼ 0, for
Hþ (H−). Hence, the integration along these paths does not
contribute to the winding of v, as C is circulated.
Horizon limit.—To address the horizon limit (r0 → rH)

we observe that, as discussed in Ref. [21], the metric near
the Killing horizon of a generic stationary and axially
symmetric BH is fairly constrained if we require regularity
(e.g., finite Ricci scalar at horizon). If the BH is not
extremal (κ ≠ 0), we can set a local radial coordinate x such
that gxx ¼ 1 and xjH ¼ 0 at the horizon. We also define
N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

D=gφφ
p

and ω ¼ −gtφ=gφφ, which yields H� ¼
ω� N= ffiffiffiffiffiffiffigφφ

p . Then, near the horizon [21]

ω≃ωHþOðx2Þ; N≃ κxþOðx3Þ; gφφ≃gHφφþOðx2Þ:
ð12Þ

This leads to

∂xH� ≃� κffiffiffiffiffiffiffi
gHφφ

q þOðxÞ: ð13Þ

Since ð1= ffiffiffiffiffiffi
gxx

p Þð∂=∂xÞ ¼ ð1= ffiffiffiffiffiffi
grr

p Þð∂=∂rÞ, then near the
horizon (x ≃ 0):

vr ¼
∂rH�ffiffiffiffiffiffi
grr

p ≃� κffiffiffiffiffiffiffi
gHφφ

q : ð14Þ

Thus, we have the following horizon limit:

signðvrÞjH ¼ �1: ð15Þ

This is sufficient for our purpose. It means that v has a
positive (negative) radial component along I3 for Hþ (H−),
in the horizon limit. By continuity, along I3 v interpolates
between an upwards (downwards) directed v at the inter-
section with I2—see Fig. 1—and a downwards (upwards)
directed v at the intersection with I4, for Hþ (H−). Its
positive (negative) radial component along I3, means v
winds in the negative, i.e., clockwise, direction along I3,
producing half of a full winding. Thus

ΩH
θ¼0 −ΩH

θ¼π ¼ −π: ð16Þ

Asymptotic limit.—Finally consider the limit R → ∞
(integration path of I1). One reaches flat spacetime in
standard spherical coordinates, yielding

vr≃ ∓ 1

r2 sin θ
⇒ signðvrÞj∞ ¼∓ 1: ð17Þ

Again, this information suffices: v has a negative (positive)
radial component along I1 for Hþ (H−). A similar
reasoning to that discussed above for the horizon limit,
means v winds in the negative (i.e., clockwise) direction
along I1, when C is circulated in the positive (i.e.,
counterclockwise) direction, producing another half of a
full winding. This means

Ω∞
θ¼π − Ω∞

θ¼0 ¼ −π: ð18Þ

Total topological charge in the exterior region.—The
limits discussed above imply that the topological charge
within I , computed from Eq. (6) is w ¼ −1, corresponding
to a full winding of v in the negative sense as the contour
delimiting I is circulated in the positive sense. Indeed,
Eq. (6) reduces to

w ¼ 1

2π

�Z
π

0

dΩ
�
r¼∞

þ 1

2π

�Z
0

π
dΩ

�
r¼rH

; ð19Þ

or

w ¼ 1

2π
ðΩ∞

π −Ω∞
0 þ ΩH

0 −ΩH
π Þ ¼ −1; ð20Þ

where Eqs. (16) and (18) were used in the last equality. This
holds for both H� and means that there exists at least one
standard LR (saddle point ofH�) for each rotation sense, in
the exterior of the BH. Thus, the theorem is proved.
Absence of a horizon.—To understand the key impor-

tance of the horizon H, consider the potential H� for flat
spacetime—see top row of Fig. 3. As expected the essential
difference occurs near the left edge of Fig. 3 (top row). The
absence of a horizon means v keeps flowing towards the
left in the whole domain, i.e., vr ¼ −1=ðr2 sin θÞ < 0, with
the sole exception of the axis limit, where it becomes
vertical, since vθ=vr ¼ cot θ → �∞ at θ ¼ 0; π, respec-
tively. It is the presence of a horizon that introduces the
vr > 0 boundary behavior at the left boundary of the ðr; θÞ
domain. As our theorem shows, this new boundary behav-
ior must introduce (at least) one LR for each rotation sense.
For flat spacetime, w ¼ 0 for any contour, and, in

particular, one that encloses the full ðr; θÞ plane, as it is
clear from Fig. 3 (top row). This is true, in fact, as long as
the behavior at all boundaries is kept, even for a curved
spacetime. Thus, smoothness at the origin and at the axis,
together with asymptotic flatness guarantees that the total
topological charge will remain zero w ¼ 0, for any
axisymmetric, stationary spacetime, which is smoothly
deformable into flat spacetime (and circular). Nonetheless,
in such generic smooth horizonless spacetime v may be
locally deformed in the bulk so that LRs emerge. LRs do
not require a horizon. The individual LR charges, however,
must add up to zero. In particular, for each standard LR (a
saddle point of H�, thus with w ¼ −1) there must be a
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nonstandard LR (maximum or minimum, thus with
w ¼ þ1). This is the theorem in Ref. [14]. Moreover, if
the null energy condition is obeyed, the nonstandard LRs
must be stable. Thus, horizonless, asymptotically flat
spacetimes with LRs must have a stable LR as long as
they are a smooth deformation from flat spacetime, like
those originating from an incomplete gravitational collapse
[14]. This is illustrated in Fig. 3 (bottom) where v is
exhibited for an ultracompact rotating boson star, a
horizonless object in Einstein-Klein-Gordon theory
[7,22]. Observe that w ¼ fþ1;−1; 0g, respectively, for
the contours fC1; C2; C3g.
Discussion.—Our theorem puts on a firm ground the

hitherto unproved expectation that generic equilibrium
BHs must have one standard LR (for each rotation sense),
(see also Refs. [23,24]). In addition, it suggests possible
ways to circumvent this result. For instance, by dropping:
(i) the circularity of the metric. Spacetime circularity holds
in vacuum GR BHs but there are reasonable scenarios
wherein it can be violated (e.g., toroidal magnetic fields
[25]). There is no fundamental reason for circularity to hold
for astrophysical BHs; (ii) asymptotic flatness. Changing
the asymptotic behavior of the spacetime may change the
boundary behavior [Eq. (17)] and hence the whole result.
The powerful tool of contour integration and topological
LR charge may help us understand more general situations.
It seems possible to tackle extremal BHs or nonspherical
(e.g., toroidal) horizons in a similar way. Astrophysically
one does not expect extremal BHs, which are thus not the
focus of this work. Moreover, recall that for extremal Kerr
BHs, the Boyer-Lindquist radial coordinate of the corotat-
ing LR coincides with that of the horizon. This is a
coordinate artifact, but it suggests that the analysis of
extremal BHs introduces subtleties.
Finally, some of our assumptions are implied if one

focuses on GR with physical matter. For instance, assuming
a GR stationary BH spacetime that is asymptotically flat
and regularly predictable, with matter satisfying the dom-
inant energy condition, then by Hawking’s theorem [26] the
cross section of the event horizon has to be topologically
spherical (S2), and the event horizon is a Killing horizon.
By further assuming that the spacetime is analytic, non-
static and with the ergosphere intersecting the horizon, the
spacetime is then required to be axially symmetric by
Hawking’s rigidity theorem.
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