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We propose a class of nonintegrable quantum spin chains that exhibit quantum many-body scars even in
the presence of disorder. With the use of the so-called Onsager symmetry, we construct scarred models for
arbitrary spin quantum number S. There are two types of scar states, namely, coherent states associated with
an Onsager-algebra element and one-magnon scar states. While both of them are highly excited states, they
have area-law entanglement and can be written as a matrix product state. Therefore, they explicitly violate
the eigenstate thermalization hypothesis. We also investigate the dynamics of the fidelity and entanglement
entropy for several initial states. The results clearly show that the scar states are trapped in a perfectly
periodic orbit in the Hilbert subspace and never thermalize, whereas other generic states do rapidly. To our
knowledge, our model is the first explicit example of disordered quantum many-body scarred models.
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Introduction.—The origin of thermalization in isolated
quantum systems and the role of ergodicity have been
studied for a long time [1,2]. Recent experimental pro-
gress in quantum engineering including ultracold atoms [3],
superconducting qubits [4], trapped ions [5], and Rydberg
atoms [6] has provided direct access to such phenomena.
As a theoretical approach, several studies revealed a
plausible scenario of the thermalization of quantum sys-
tems, namely, the eigenstate thermalization hypothesis
(ETH). A strong form of the ETH states that all energy
eigenstates are locally indistinguishable from the micro-
canonical ensemble [7,8]. Although there is no rigorous
proof, it is widely believed to hold for a large class of
interacting systems, as evidenced by several numerical
studies [9–12]. On the other hand, a weak version of ETH,
which states almost all energy eigenstates are locally
indistinguishable from the microcanonical ensemble [13],
was proved for generic translationally invariant short-range
interacting systems [14]. Remarkable exceptions are inte-
grable and many-body localized systems [2,15–17]. In such
systems, the existence of an extensive number of conserved
quantities or integrals of motion strongly breaks ergodicity,
and therefore the weak ETH as well [18].
Recently, there has been increasing interest in systems

which weakly violate ergodicity; almost all typical states
thermalize rapidly, as expected in generic interacting
systems, but certain special states do not or exhibit
anomalously slow thermalization, which means that they
obey the weak ETH but violate the strong ETH. From
another perspective, most energy eigenstates have volume-
law entanglement entropy (EE), whereas those special
states have sub-volume-law EE. These unusual states are
called quantum many-body scars (QMBS) [6,21–23].

The initial experimental observation of QMBS [6] has
stimulated further theoretical studies. In particular, an
effective model of this experimental setup, dubbed the
PXP model [21,22,24–26] has been intensively studied to
elucidate the peculiar absence of thermalization. Another
approach is to construct models with perfect QMBS,
whose exact expression can be written down and perfect
revivals in the many-body quantum dynamics can be
shown analytically. Some previous work revealed a sit-
uation in which scar states live in a large global angular
momentum sector protected from thermalization [27–29].
Others studied scar states in the Affleck-Kennedy-Lieb-
Tasaki (AKLT) model [30,31] or constructed such AKLT-
like matrix product state (MPS) scar states [32,33].
Moreover, the Floquet analog of ETH violation and
QMBS has also been discussed [34,35]. Despite such
intensive studies on QMBS, its general framework and
origin remain unclear [36]. In order to gain a better
understanding, analytically tractable QMBS models are
much appreciated.
In this Letter, we propose a new class of spin models

with QMBS. The key to the construction is the so-called
Onsager algebra [37], which originally appeared in
obtaining the exact solution of a two-dimensional classical
Ising model. Focusing on a certain Onsager-algebra
element, we can explicitly write down a one-parameter
family of scar states as an MPS with a finite bond
dimension, which means scar states have area-law EE.
Our model has three remarkable features: (1) the scar state
in our model is not a product state such as those discussed
in Ref. [29], but does have a finite area-law entanglement.
(2) Although here we demonstrate mainly the spin quantum
number S ¼ 1=2 case, S can be an arbitrary half-integer.
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Scar states can also be generalized to multiparameter ones,
while we explain one-parameter ones in the main text
for simplicity. See Supplemental Material [38] for these
generalizations. (3) We do not impose translational invari-
ance on our model. To the best of our knowledge, this is the
first explicitly constructed example of the disordered
QMBS model [39].
Onsager symmetry in spin chain.—Before defining our

model that exhibits QMBS, we first introduce the following
integrable Hamiltonian of the self-dual U(1)-invariant clock
model [40] under the periodic boundary condition

Hn ¼ −
XL
j¼1

Xn−1
a¼1

1

2 sinðπa=nÞ ½nð−1Þ
aðS−j Sþjþ1Þa þ H:c:

þ ðn − 2aÞωa=2τaj �: ð1Þ
Here, L is the number of sites and assumed to be even,
ω ¼ e2πi=n, and n is a dimension of each local Hilbert space
Hj ≃ Cn, and hence the total Hilbert space is⊗L

j¼1 Hj. The
operators τj and S�j act on Hj as

τ ¼

0
BBBBB@

1

ω

. .
.

ωn−1

1
CCCCCA
; Sþ ¼

0
BBBBB@

0 1

. .
. . .

.

0 1

0 0

1
CCCCCA
;

ð2Þ

and S− ¼ ðSþÞ†. The simplest n ¼ 2 case reduces to the
S ¼ 1=2 XX model

H2 ¼
XL
j¼1

Sþj S
−
jþ1 þ S−j S

þ
jþ1; ð3Þ

and the n ¼ 3 case is known as a particular case of the
Fateev-Zamolodchikov model [41,42]. It can be easily seen
that Hn commutes with the U(1)-charge Q:

Q ≔
XL
j¼1

Szj; Sz ¼ diag

�
n − 1

2
;
n − 3

2
;…;−

n − 1

2

�
;

ð4Þ

which follows from ½Q; S�j � ¼ �S�j . Note that S
þ (S−) are

not standard spin raising (lowering) operators and do not
obey the SU(2) commutation relation, i.e., ½Sþ; S−�=∝ Sz

(except for an n ¼ 2 or 3 case), and the model does not
have SU(2) symmetry.
A remarkable observation in Ref. [40] is that Q and Q̂,

the dual of Q obtained by the dual transformation on τ and
ðσÞij ¼ δi;jþ1 mod n [38], do not commute, but generate
the Onsager algebra [37]. One of such Onsager-algebra
elements is

Qþ ¼
XL
j¼1

Xn−1
a¼1

ð−1Þðnþ1Þjþa

sinðπa=nÞ ðSþj ÞaðSþjþ1Þn−a; ð5Þ

which plays an important role in generating QMBS
states below [43]. Because of the self-duality, Hn also
commutes with Q̂, and therefore, all Onsager-algebra
elements including Qþ. Actually, the boundary condition
employed here differs from Ref. [40], but any important
commutation relations still hold with straightforward
modifications [38].
We denote by jpi (p ¼ 0; 1;…; n − 1) the eigenstate
of Sz with eigenvalue p − ðn − 1Þ=2. The ferroma-

gnetic state j⇓i ≔⊗L
j¼1 j0i is the eigenstate of Hn with

eigenvalue−L
P

n−1
a¼1f½ðn − 2aÞωa=2�=½2 sinðπa=nÞ�g. Since

½Qþ; Hn� ¼ 0, ðQþÞkj⇓i (k ¼ 0;…; b½ðn − 1Þ=n�Lc) are
also eigenstates of Hn with the same eigenvalue.
Model and perfect scars.—Let us consider the

Hamiltonian

HS ¼ Hn þHpert;n þ h
XL
j¼1

Szj: ð6Þ

We choose Hpert;n so as to destroy the integrability of the
Hamiltonian but keep ðQþÞkj⇓i to be eigenstates as
follows. We introduce an (unnormalized) coherent state

jψðβÞi ≔ expðβnQþÞj⇓i; ð7Þ

which is exactly written as an MPS [38]:

jψðβÞi ¼
X

p1;…;pL

trðAp1
Bp2

…ApL−1
BpL

Þjp1…pLi; ð8Þ

where Ap and Bp are n × nmatrices whose matrix elements
are (using 0-based indexing)

ðApÞij ¼ βpδi;pδj;0 þ
ð−1Þjþ1βp

sin½πðn − jÞ=n� δn−p;j−i; ð9Þ

ðBpÞij ¼ βpδi;pδj;0 þ
ð−1Þn−jβp

sin½πðn − jÞ=n� δn−p;j−i ð10Þ

for 0 ≤ i; j ≤ n − 1. This MPS representation reveals that
particular spin configurations over three consecutive sites
never appear in jψðβÞi. In the case of n ¼ 2, for example, it
is easily verified that

ABA¼
� j000i− β2ðj011i− j110iÞ βj001i þ β3j111i

βj100i− β3j111i β2j101i

�
;

ð11Þ

where we introduce the notation
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ðAÞij ¼
Xn−1
p¼0

ðApÞijjpi; ðBÞij ¼
Xn−1
p¼0

ðBpÞijjpi: ð12Þ

One can see that any matrix elements of Eq. (11) are orthogonal to both j010i and ðj011i þ j110iÞ= ffiffiffi
2

p
. The same

conclusion follows from BAB configuration. Therefore, we consider the following perturbation up to three-body
interactions:

Hpert;2 ¼
XL
j¼1

�
cð1Þj j010ih010j þ cð2Þj

2
ðj011i þ j110iÞðh011j þ h110jÞþcð3Þj ½j010iðh011j þ h110jÞ þ H:c:�

�
j−1;j;jþ1

: ð13Þ

Note that when cð3Þj ≠ 0, HS does not have U(1) symmetry.
Several remarks are in order. First, we emphasize that the

translational invariance is not assumed for HS. To the best
of our knowledge, such models have not been explicitly
constructed before this work. Second, here we introduced a
one-parameter coherent state, but a parallel discussion
allows us to generalize to a multiparameter coherent state
using higher Onsager algebra elements [38]. Third, per-
turbation terms for higher spin cases n ≥ 3 are also
obtained in a similar way [38].
Although Hn is integrable, it is likely that the perturba-

tion makes HS nonintegrable for generic cðiÞj . To confirm
the nonintegrability of the model, we compute the level-
spacing statistics of HS by exact diagonalization in the

particular case where cð1Þj are chosen randomly from ½−1; 1�
and cð2Þj ¼ cð3Þj ¼ 0. Let E1 ≤ E2 ≤ � � � ≤ Ei ≤ � � � be
eigenvalues of HS in ascending order and ΔEi ¼
Eiþ1 − Ei. It is well known [48–50] that si ¼ ΔEi=
hΔEii obeys the Poisson (Wigner-Dyson) distribution if

HS is integrable (nonintegrable), where hΔEii is an average
of ΔEi ’s. The level-spacing ratio (also known as r value)
[15] hri ¼ hminðΔEi;ΔEiþ1Þ=maxðΔEi;ΔEiþ1Þi is often
used for quantitative detection of distribution statistics;
hri ≃ 0.39 for the Poisson distribution, and hri ≃ 0.53
for the Wigner-Dyson distribution. The results shown in
Fig. 1 agree well with the Wigner-Dyson distribution,
which implies the nonintegrability of HS. Its r value hri ≃
0.5328… is also close enough to that of the Wigner-Dyson
distribution [51].
However, ðQþÞkj⇓i violate the strong ETH, as they have

a sub-volume-law EE even though they are excited states.

FIG. 1. Level-spacing statistics in the middle half of the
spectrum of HS in the n ¼ 2 case. The parameters and the
symmetry sector used are indicated in the figure. Each cj is
randomly chosen from ½−1; 1�. The probability density function
of the Wigner-Dyson distribution PðsÞ ¼ ðπ=2Þse−πs2=4 and the
Poisson distribution PðsÞ ¼ e−s are shown for comparison. The
result agrees well with the Wigner-Dyson distribution.

(a)

(b)

FIG. 2. Half-chain bipartite EE as a function of energy E for
(a) n ¼ 2; L ¼ 14; h ¼ 1.0 and (b) n ¼ 3; L ¼ 8; h ¼ 1.5. Color
scale for each dot indicates the density of data points. ðQþÞkj⇓i
are marked by red solid circles. (a) Perturbation parameters are

chosen randomly as cð1Þj ; cð2Þj ; cð3Þj ∈ ½−1; 1�. (b) Perturbations are
chosen not to destroy one-magnon scars indicated by the red
dashed circle [38]. A green dashed line indicates ln 2.
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In fact, one can show that an upper bound for the EE of
ðQþÞkj⇓i scales as OðlnLÞ [38]. In particular, a coherent
state has an area-law EE since it can be written as an MPS
with finite bond dimension.
Entanglement entropy of our model.—The von Neumann

EE is one of the measures of quantum entanglement. With
respect to a bipartition of the system into subsystems A and
B, the von Neumann EE of jϕi for A is defined as

SA ¼ −trAðρA ln ρAÞ; ð14Þ

where ρA ¼ trBðjϕihϕjÞ is the reduced density matrix of
region A. In the following, we focus on the half-chain
bipartite von Neumann EE and take the left half of the chain
to be region A.
The strong ETH states that all energy eigenstates are

thermal, which implies that these energy eigenstates have
volume-law entanglement [8]. Figure 2 shows half-chain
bipartite EE for every energy eigenstate as a function of
energy for (a) n ¼ 2 and (b) n ¼ 3. In both plots, a general
feature of QMBS can be seen: the states in the bulk of
energy spectrum have large volume-law EE, whereas some
atypical states have anomalously small sub-volume-law
EE, including ðQþÞkj⇓i marked by red circles [52]. In (b),

one can see other low EE states besides ðQþÞkj⇓i. In
particular, EE of several states is exactly ln 2. We identify
these states as one-magnon states lying on the Hilbert
subspace spanned by fj2…212…2ig. Note that here HS
does not have U(1) symmetry. These one-magnon
scars, however, disappear by adding other perturbation
terms [38].
Dynamics.—The dynamics is also studied to illustrate

the feature of the QMBS more explicitly. First, let us
consider the dynamics of the coherent state. For the initial
coherent state jψ t¼0ðβÞi ¼ jψðβÞi, it is obvious from the
construction of HS that

jψ tðβÞi ¼ e−iHStjψðβÞi ∝ e−ih
P

j
Szjt

X∞
k¼0

ðβnQþÞkj⇓i

∝ jψðe−ihtβÞi: ð15Þ

Although the coherent state does evolve, it returns to itself
with period T ¼ 2π=ðnhÞ, since jψðe2πi=nβÞi ¼ jψðβÞi. We
emphasize that this revival is perfect, and thus the coherent
state never thermalizes.
We show in Fig. 3 the numerical results of the fidelity

dynamics with several initial states jϕi defined by

FðtÞ ¼ jhϕðtÞjϕð0Þij ¼ jhϕjeiHStjϕij: ð16Þ

When the initial states are coherent states, we can see
perfectly periodic revivals of their fidelity. However, if the
system starts from other generic states, its fidelity decreases
rapidly to 0.
We also calculate the dynamics of the half-chain bipartite

EE shown in Fig. 4 with the same setup as Fig. 3. It is easy
to see that the coherent state does not gain entanglement,
sinceHS acts on jψðβÞi as if it is just an external field, i.e., a
noninteracting term [see Eq. (15)]. On the other hand, EE of
the initial product state j1010…i grows soon and saturates
near the Page value [54] of a random state

SPage ¼
L
2
ln 2 −

1

2
: ð17Þ

From these numerical results on dynamics of the fidelity
and EE, we confirm that typical states thermalize rapidly,
while scar states never thermalize and violate ergodicity.
Summary and outlook.—We have constructed a disor-

dered spin chain model with QMBS with the help of the
Onsager algebra. There are two types of scar states, namely,
coherent scar states associated with an Onsager-algebra
element and one-magnon scars. A coherent state has been
written explicitly as an MPS, which implies that it has a
finite but area-law EE. We have shown analytically that the
coherent state undergoes a perfect revivals, and therefore
never thermalizes. On the other hand, most of other generic
states thermalize rapidly, as evidenced by the EE spectrum
and dynamics. Although we have demonstrated our model

FIG. 3. Fidelity dynamics with n ¼ 2; L ¼ 10; h ¼ 1.0, and

cð1Þj ; cð2Þj ; cð3Þj chosen randomly from ½−1; 1�. Perfectly periodic
revivals can be seen in the case where the initial state is a coherent
state, whereas for other typical states the fidelity decreases very
quickly to 0.

FIG. 4. Dynamics of the half-chain bipartite EE with the same
setup as Fig. 3. Initial coherent states have constant EE, while that
of j1010…i grows rapidly and saturates near the Page value
denoted by the black dashed line. The EE of the random initial
state almost remains at the Page value from first to last.

PHYSICAL REVIEW LETTERS 124, 180604 (2020)

180604-4



mainly in the case of S ¼ 1=2, the results are also valid for
general S.
Before finishing our discussion, several remarks are

in order. First, Onsager scar states ðQþÞkj⇓i can be
prepared in a Markovian open quantum system. By taking
jump operators that annihilate the coherent state, the
decoherence-free subspace for this Lindblad dynamics is
spanned by ðQþÞkj⇓i. Thus, these Onsager scar states are
steady states and can be obtained through the dynamics
with arbitrary initial states. Second, for the S ¼ 1=2 case,
our coherent state and the ground state of the quantum
lattice gas model studied in Ref. [55] are closely related to
each other. In our coherent state, let us define bond
variables for each bond between site j and jþ 1 by
bj;jþ1 ¼ ðSþj S−j ÞðSþjþ1S

−
jþ1Þ. Each bj;jþ1 takes 0 or 1, but

one can easily see that adjacent bond variables bj−1;j
and bj;jþ1 can never be 1 simultaneously. The configura-
tion of bj;jþ1 corresponds to the ground state of the
model in Ref. [55] by identifying bj;jþ1 ¼ 1 ↔ j↑ij and
bj;jþ1 ¼ 0 ↔ j↓ij. It is an open question whether we can
apply similar identification to higher-spin cases.
Our work suggests a number of future research direc-

tions. The unperturbed Hamiltonian has an infinite number
of Onsager-algebra elements commuting with each other.
This implies that we could construct other models using
such higher Onsager-algebra elements. The generalization
to multiparameter coherent states discussed in [38] is one of
such examples. Moreover, we could construct a Floquet
scar [34,35] with Hermitian Onsager-algebra elements.
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