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Based on a generalization of Hohenberg-Kohn’s theorem, we propose a ground state theory for bosonic
quantum systems. Since it involves the one-particle reduced density matrix γ as a variable but still recovers
quantum correlations in an exact way it is particularly well suited for the accurate description of Bose-
Einstein condensates. As a proof of principle we study the building block of optical lattices. The solution of
the underlying v-representability problem is found and its peculiar form identifies the constrained search
formalism as the ideal starting point for constructing accurate functional approximations: The exact
functionals F ½γ� for this N-boson Hubbard dimer and general Bogoliubov-approximated systems are
determined. For Bose-Einstein condensates with NBEC ≈ N condensed bosons, the respective gradient

forces are found to diverge, ∇γF ∝ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − NBEC=N

p
, providing a comprehensive explanation for the

absence of complete condensation in nature.
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Introduction.—One of the striking features of quantum
many-body systems is that their elementary constituents
interact only by two-body forces. As a consequence, the
corresponding ground state problem can in principle be
solved in terms of the two-particle reduced density matrix
replacing the exponentially complex N-particle wave
function [1–4]. Furthermore, in each scientific field all
systems of interest are characterized by the same fixed
interaction W between the particles (e.g., Coulomb inter-
action in quantum chemistry and contact interaction in
the field of ultracold gases). The class of N-particle
Hamiltonians is thus parametrized solely by the external
potential v. Since the conjugate variable of v is the (particle
or charge) density, this heuristic reasoning identifies
density functional theory as the most economic approach
in each scientific field for addressing the ground state
problem. Indeed, density functional theory has become in
the past few decades the method of choice for electronic
structure calculations in physics, chemistry, and materials
science [5]. It is, however, not suitable for describing in a
direct way Bose-Einstein condensation (BEC), one of the
most fascinating phenomena of quantum physics. This is
due to the fact that the particle density does, in general, not
provide sufficient insights into the presence or absence of
BEC, quite in contrast to the one-particle reduced density
matrix (1RDM)

γ ≡ NTrN−1½Γ�≡
X
α

nαjαihαj; ð1Þ

which is obtained from the N-boson density operator Γ by
integrating out all except one boson: BEC is present
whenever the largest eigenvalue nmax ¼ maxφhφjγjφi of
the 1RDM is proportional to N [6]. This criterion is more
general than the one referring to off-diagonal long-range
order of γðr⃗; r⃗0Þ ¼ hr⃗jγjr⃗0i [7], since it also applies to
nonhomogeneous systems.
Based on Bose’s work [8], Einstein in 1925 predicted the

existence of BEC [9]. Its experimental realization for cold
atoms in 1995 [10–12] has led to a renewed interest. Since
then, the respective field of ultracold atomic gases has even
become one of the most active fields in quantum physics
(see, e.g., Refs. [13–16]) with a broad range of applications
in quantum technologies (see, e.g., Refs. [17–20]). It is also
this development that urges us to propose and work out in
the following a computationally feasible method that is
capable of describing strongly interacting bosons in general
and BEC in particular. This bosonic one-particle reduced
density matrix functional theory (RDMFT) is based on a
generalization of the famous Hohenberg-Kohn theorem
[21]. It therefore recovers quantum correlations in an
effective but exact manner and is not restricted to the
low-density regime, quite in contrast to the Gross-
Pitaevskii [22–24] or Bogoliubov theory [24,25]. The
study of two concrete systems shall serve as a proof
of principle: We succeed in determining their universal
functionals. Moreover, we solve the underlying v- and
N-representability problem which have partly hampered
the development of RDMFT in fermionic quantum
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systems [26,27]. A comprehensive explanation for the
absence of complete BEC in nature follows, highlighting
the potential of our novel method.
Foundation of bosonic RDMFT.—Because of Gilbert

[21], a generalization of the Kohn-Hohenberg theorem to
Hamiltonians of the form

HðhÞ≡ hþW ð2Þ

with a fixed interaction W proves the existence of a
universal 1RDM-functional F ½γ�: The ground state energy
and ground state 1RDM follow for any choice of the one-
particle Hamiltonian h from the minimization of the total
energy functional

Eh½γ� ¼ Tr½hγ� þ F ½γ�: ð3Þ

The functional F is universal in the sense that it does not
depend on h≡ tþ v but only on the fixed interaction W.
This is due to the fact that the 1RDM γ allows one to
determine not only the external potential energy Tr½vγ�, but
also the kinetic energy Tr½tγ�. Because of the significance of
bosonic quantum systems and the importance of γ as an
indicator for BEC it is surprising that RDMFT has been
developed only for fermionic systems (see, e.g., the reviews
[28–31]). In this Letter we take the first steps towards
realizing a bosonic RDMFT and in particular observe that
some obstacles in the case of fermionic systems do not
hamper its bosonic counterpart.
Let us first recall that the universal functional F is

defined on the set Pv of 1RDMs which correspond to
ground states of Hamiltonians HðhÞ. But for which γ does
there exist a corresponding h? Unfortunately, no solution to
this so-called v-representability problem is known, neither
for fermions nor for bosons. To circumvent the v-repre-
sentability problem, Levy suggested an extension of
RDMFT to including nonphysical 1RDMs as well [26]
(see also Ref. [32]). Expressing the ground state energy as
EðhÞ≡minΓTrN ½HðhÞΓ�, and using the fact that the
expectation value of h is determined by γ, allows one to
replace F in Eq. (3) by [26,27,32,33]

F ðp=eÞ½γ� ¼ min
Γ↦γ

TrN ½WΓ�: ð4Þ

The minimization in Eq. (4) may either be restricted to the
pure (p) or all ensemble (e) N-boson states Γ mapping to
the given 1RDM, γ ¼ NTrN−1½Γ�. Consequently, the func-
tional F ðp=eÞ is defined on the domain Pp=e of pure or
ensemble N-representable 1RDMs, where Pv ⊆ Pp ⊆ Pe.
A far-reaching observation is that for every 1RDM [recall
Eq. (1)] there exists a corresponding bosonic pure state
Γ≡ jΦihΦj, e.g., jΦi ¼ 1=

ffiffiffiffi
N

p P
α

ffiffiffiffiffi
nα

p jα;…; αi. Hence,
in contrast to fermions [1,34–36], the one-body pure
N-representability problem is trivial. Consequently, it will

not hamper the development of bosonic functionals, and
one has in particular Pp ¼ Pe.
Hubbard dimer.—To illustrate the potential of bosonic

RDMFT we discuss as a first example the Hubbard dimer
for an arbitrary number N of spinless bosons. This building
block of the Bose-Hubbard model is realized [37] and
prominently used in the context of ultracold bosonic atoms,
whose parameters can be tuned by laser light [14–16,38].
Similarly to the two-electron Hubbard dimer in the context
of fermionic functional theories [39–44], its bosonic
counterpart will serve as a theoretical laboratory system,
eventually providing crucial insights into larger systems. Its
Hamiltonian reads

H ¼ −tðb†LbR þ b†RbLÞ þ
X
j¼L=R

vjn̂j þ U
X
j¼L=R

n̂jðn̂j − 1Þ;

ð5Þ

where the operators b†j and bj create and annihilate a boson
on site j ¼ L=R, and n̂j is the corresponding particle-
number operator. The first term in Eq. (5) describes the
hopping between both sites while the second one represents
the external potential and the third one the on-site repul-
sion (U > 0).
In the following, we represent γ with respect to the lattice

site states jLi; jRi and assume real-valued matrix elements.
We choose γLL ¼ 1 − γRR and γLR ¼ γRL as the two
independent variables. Here, we normalize the 1RDM to
unity since then the sets Pp ¼ Pe become independent of
N (which allows the comparison of functionals for different
values of N). As already stressed, the only constraint on
those sets is that γ’s eigenvalues are nonnegative, leading to

γ2LR þ
�
γLL −

1

2

�
2

≤
1

4
: ð6Þ

Because of the circular symmetry of this disc it will prove
convenient below to also introduce spherical coordinates:
γLL ¼ 1

2
½1þ ð1 − 2DÞ cosφ� and γLR ¼ 1

2
ð1 − 2DÞ sinφ.

Hence, as illustrated in Fig. 1, D is γ’s distance to the
boundary ∂Pp and Eq. (6) reduces to 0 ≤ D ≤ 1=2. The
corresponding spectral decomposition of γ becomes

FIG. 1. Left: Illustration of the spherical representation (7) of
the 1RDM γ. Right: Straight line γðλÞ as constructed within the
approach (10) at an angle φ.
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γðD;φÞ ¼ ð1 −DÞjφihφj þDjφ⊥ihφ⊥j; ð7Þ

with the natural orbitals jφi ¼ cosðφ=2ÞjLi þ sinðφ=2ÞjRi
and jφ⊥i ¼ sinðφ=2ÞjLi − cosðφ=2ÞjRi.
To discuss and compare the three universal functionals

F , F ðpÞ, and F ðeÞ, respectively, we first need to address the
underlying v-representability problem. Given its funda-
mental significance in functional theories, it is remarkable
that no solution is known so far beyond the two-electron
Hubbard dimer [45]. To solve here that problem for
arbitrary particle numbers N, we first observe that the
ground states for the hopping rate t ¼ 0 are given by
configuration states with nL bosons on the left and nR ¼
N − nL on the right site. By varying the asymmetry vL − vR
of the external potential we can reach all values nL ¼
0; 1;…; N and therefore each γ ¼ ðnL=NÞjLihLj þ ð1 −
nL=NÞjRihRj is v representable. Moreover, vL − vR can be
chosen such that the two configurations nL and nL þ 1 are
degenerate. By considering infinitesimal deformations of
the respective Hamiltonian, one can thus reach any possible
superposition xjnL; nRi �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
jnL þ 1; nR − 1i. This

leads to ellipses of v-representable 1RDMs. As is shown
in the supporting information [46], the degeneracy of those
specific ground states implies that all 1RDMs surrounded
by such an ellipse (black solid ellipses in Fig. 2) are not v
representable. Moreover, by anticipating the results on the
presence of a diverging gradient, none of the 1RDMs
on the boundary ∂Pp is v representable (except γ ¼
jLihLj; jRihRj) but all points in its vicinity (0 < D ≪ 1)
can be obtained as ground state 1RDMs. Last but not least,
each 1RDM between the boundaries of the black solid
ellipses and ∂Pp can be reached. This can be confirmed by
numerical investigations or mathematically by constructing
corresponding connecting paths of ground state 1RDMs.
The solution of the v-representability problem provides

additional crucial insights. In particular, the probability
pN ¼ 1 − VolðPvÞ=VolðPpÞ for finding non-v-represent-
able 1RDMs does not vanish for large particle numbers N,
pN → π=8 ≃ 0.39. Moreover, the domain Pv (orange) of
the Gilbert functional F is getting arbitrarily complicated
for larger N, as sketched in Fig. 2. This identifies Levy’s
constrained search (4) as the more suitable starting point for

developing an RDMFT. The corresponding functional F ðpÞ
N

can be determined analytically for N ¼ 2 bosons,

F ðpÞ
2 ½D;φ� ¼ U½2 − ð1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1 −DÞ

p
Þsin2ðφÞ�; ð8Þ

and in the limit of large N (see the Supplemental Material
[46]). For finite N > 2, one can easily determine the
functional by an exact numerical calculation based on
the minimization in Eq. (4). The ensemble functionals

follow directly as the lower convex envelops, F ðeÞ
N ¼

ConvðF ðpÞ
N Þ [36].

The results for F ðpÞ
N and F ðeÞ

N together with the solution
of the v-representability problem are presented in Fig. 2.

Panel (b) confirms that F ðeÞ
N is indeed given as the largest

convex function fulfillingF ðeÞ
N ≤ F ðpÞ

N on the entire domain
Pp. While for v-representable 1RDMs, γ ∈ Pv, both

functionals F ðpÞ
N ;F ðeÞ

N necessarily coincide [36,45,47,48]
(they are equal to F ), this is remarkably also the case in the
limit of large N for non-v-representable 1RDMs. The most
surprising insight, however, is that the gradients of the
functionals seem to diverge repulsively on the boundary
∂Pp, which prevents the system from ever reaching

complete condensation in any state jφi ¼ b†φj0i (as corre-
sponding toD ¼ 0). For instance, forN ¼ 2 [recall Eq. (8)]

one finds ∂F ðpÞ
2 =∂D ≃ −Usin2ðφÞ= ffiffiffiffi

D
p

. Does this result
generalize to larger systems and in that sense provide a
comprehensive explanation for the absence of complete
BEC in nature (quantum depletion)?
In the following we confirm the existence of this “Bose-

Einstein condensation-force” also for N > 2. For this, we
propose and work out an approach which allows one to
determine exact functionals in the vicinity of the boundary
∂Pp which corresponds to N-boson states close to com-
plete BEC. We first observe that the value F ðpÞ½γh� of the
functional at a v-representable “point” γh [with correspond-
ing Hamiltonian HðhÞ and ground state energy EðhÞ]
follows directly from the energy relation

EðhÞ ¼ F ðpÞ½γh� þ Tr½hγh�: ð9Þ

FIG. 2. For the Bose-Hubbard dimer we plot (a) the pure
functional F ðpÞ

N and (b) the ensemble functional F ðeÞ
N (both

renormalized to [0, 1]) as functions of the diagonal γLL and
the off-diagonal entry γLR of the 1RDM for the particle numbers
N ¼ 2; 4;∞. In (c) the v-representable 1RDMs are shown in
orange and the nonphysical ones in black (see text for more
details).
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The second crucial ingredient is that each γ ¼ jφihφj ∈
∂Pp has a unique corresponding N-boson state which is

given by 1=
ffiffiffiffiffiffi
N!

p ðb†φÞN j0i. We could identify those states as
the unique ground states of the one-particle Hamiltonians
hð0Þ ≡ −b†φbφ. As illustrated in Fig. 1, the idea is then to
construct for fixed φ a curve Hðλ;φÞ of auxiliary
Hamiltonians,

Hðλ;φÞ ↦ jΦðλ;φÞi ↦ γðλ;φÞ; ð10Þ

whose ground state 1RDMs γðλ;φÞ≡ TrN−1½jΦðλ;φÞi×
hΦðλ;φÞj� describe a straight line at an angle φ starting
at jφihφj ¼ γðλ ¼ 0;φÞ. To calculate the functional
F ðpÞ½γðD;φÞ� for D ≪ 1 according to Eq. (9) we
expand the Hamiltonian, Hðλ;φÞ≡ hðλ;φÞ þ λW ¼
hð0Þ þ λðhð1Þ þWÞ þOðλ2Þ. The purpose of the higher
orders of the one-particle Hamiltonian hðλ;φÞ is to
ensure that γðλ;φÞ remains diagonal in the basis
jφi; jφ⊥i, at least up to second order in λ. As it is shown
in the supporting information [46], the eigenvalue problem
Hðλ;φÞjΦðλ;φÞi ¼ Eðλ;φÞjΦðλ;φÞi can systematically be
solved in several orders of λ, while the enforced diagonality
of γ determines the required higher order terms of hðλ;φÞ.
Comparison of the 1RDM of the ground state jΦðλ;φÞi
with Eq. (7) fixes λ≡ λðD;N;φÞ. Plugging all results from
the perturbation theoretical calculation into Eq. (9) yields
(for D ≪ 1):

F ðpÞ
N ½γðD;φÞÞ� ≃ Eð0Þ

N ðφÞ þ Eð1Þ
N ðφÞD

− Usin2ðφÞN
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p ffiffiffiffi
D

p
; ð11Þ

where Eð0Þ
N ðφÞ≡UNðN − 1Þ½1 − 1

2
sin2ðφÞ�, Eð1Þ

N ðφÞ≡
UNðN − 2Þ½3 sin2ðφÞ − 2� depend on φ and N only. The
key result (11) confirms the existence of a “BEC-force” on
the boundary of the domain Pp. Indeed, we find that

∂F ðpÞ
N

∂D ¼ −
U
2
N

ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
sin2ðφÞD−1=2 þOðD0Þ ð12Þ

diverges repulsively for D → 0, for all N and φ (except
φ ¼ 0; π).
To fully appreciate the scope of the surprising finding

(12), let us recall that the functional F ðpÞ
N is universal. Its

form and features therefore provide insights into the ground
states of all Hamiltonians HðhÞ (2) simultaneously. To
illustrate this in the Hubbard dimer, we choose an arbitrary
h [i.e., t and Δv≡ ðvL − vRÞ=2t]. The energy functional

follows as NTr½hγ� þ F ðpÞ
N ½γ�. Its minimization yields the

corresponding ground state energy and the ground state
1RDM (described by φ0 and D0 ≡ 1 − NBEC=N), as a
function of Δv; u ¼ U=t and N. For the number NBEC of
bosons condensed in the one-particle state jφ0i we obtain

NBEC ≃ N

�
1 −

ðN − 1Þsin4ðφ0Þ
16½sinðφ0Þ − Δv cosðφ0Þ�2

u2
�
: ð13Þ

The required condition of BEC, D0 ¼ 1 − NBEC=N ≪ 1

implies u ≪ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
. The corresponding natural orbital

jφ0i typically deviates from the lowest eigenstate of h, but
its concrete form is here not relevant.
Bogoliubov-approximated systems.—As a second exam-

ple, we discuss homogeneous dilute Bose gases with
an arbitrary pair interaction Wðjr⃗i − r⃗jjÞ in a cubic box
of length L. We exploit the commonly used s-wave
scattering approximation and recall that the pair interaction
simplifies in the dilute regime to ðW0=2L3Þn̂0ðn̂0 − 1Þþ
ðW0=2L3ÞPp≠0 ð2n̂0n̂p þ b†pb

†
−pb0b0 þ H:c:Þ, where W0

denotes the zeroth Fourier coefficient of Wð·Þ [24]. As
a consequence, the functional F ½fnpgp≠0� separates,
F ½fnpg� ¼

P
p≠0 F p½np�. Moreover, the contribution Eϵp

of each pair mode ðp;−pÞ to the ground state energy is
known for any choice of the kinetic energy

P
p ϵpn̂p,

Eϵp ¼ 1
2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2p þ 2nW0ϵp

q
− ðϵp þ nW0Þ�, where n≡ N=L3

denotes the particle density. This allows us to determine
Fp½np� more directly as the Legendre-Fenchel transform
of Eϵp [cf. Eq. (3) and Refs. [32,36] ], leading to
F p½np� ¼ EϵpðnpÞ − ϵpðnpÞnp. ϵpðnpÞ¼ðnW0=2Þ½ð2npþ1Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npðnpþ1Þp

−2� follows from the inversion of the known
relation np ≡ npðϵpÞ [24]. Eventually, this yields

F ðpÞ
N ½fnpg� ≃ −nW0

X
p≠0

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npðnp þ 1Þ

q
− np

i
: ð14Þ

In analogy to the dimer’s result (11), any homogeneous
dilute Bose gas exhibits a BEC-force which diverges
repulsively on the boundary of Pp. To illustrate this, we
consider a straight path to the boundary ∂Pp. Taking the
derivative of the functional (14) along that path with respect
to the distance D≡ 1 − NBEC=N close to complete BEC

yields dF ðpÞ
N =dD ∝ −1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − NBEC=N

p
. Hence, the diverg-

ing BEC-force prevents the system from reaching com-
plete BEC.
Conclusion.—Bose-Einstein condensation (BEC) is

often described through the Gross-Pitaevskii mean-field
theory [22–24]. We have proposed a reduced density matrix
functional theory (RDMFT) which no longer discards the
quantum correlations but recovers them in an exact way. In
contrast to its fermionic counterpart [36], the underlying
one-body N-representability problem is trivial and cannot
hamper the development of bosonic RDMFT. By solving
the v-representability problem for the building block of
optical lattices (N-boson Hubbard dimer) we identified
Levy’s constrained search as the ideal starting point for
constructing accurate functional approximations. This
allowed us to determine for two classes of systems the

PHYSICAL REVIEW LETTERS 124, 180603 (2020)

180603-4



exact functionals F ½γ�. Remarkably, their gradients were
found to diverge in the regime of Bose-Einstein condensa-
tion,∇γF ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − NBEC=N

p
, providing a comprehensive

explanation for the absence of complete BEC in nature. For
its proof, we developed a general approach that facilitates
the calculation of functionals close to the boundary of their
domains. This key finding of a universal BEC-force can be
seen as the bosonic analog of the recently discovered
fermionic exchange force [49].
We also would like to reiterate that F ½γ� is universal. It

depends only on the interparticle interaction W while the
one-particle terms h are covered by the linear functional
Tr½hγ�. Hence, determining or approximating F ½γ� would
represent the simultaneous (partial) solution of the
ground state problem for all Hamiltonians of the form
HðhÞ ¼ hþW. This offers a range of new possibilities.
For instance, any trap potential could be considered and
linear response coefficients become accessible.
Furthermore, in analogy to many-body localization for
electrons (see, e.g., Ref. [50] and references therein), the
influence of disorder and interparticle interactions on BEC
and their competition [51,52] can be studied in a more
direct manner. All those applications highlight the prom-
ising potential of bosonic RDMFT.
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