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Quantum networks illustrate the use of connected nodes of quantum systems as the backbone of
distributed quantum information processing. When the network nodes are entangled in graph states, such a
quantum platform is indispensable to almost all the existing distributed quantum tasks. Unfortunately, real
networks unavoidably suffer from noise and technical restrictions, making nodes transit from quantum to
classical at worst. Here, we introduce a figure of merit in terms of the number of classical nodes for
quantum networks in arbitrary graph states. Such a network property is revealed by exploiting a novel
Einstein-Podolsky-Rosen steerability. Experimentally, we demonstrate photonic quantum networks of nq
quantum nodes and nc classical nodes with nq up to 6 and nc up to 18 using spontaneous parametric down-
conversion entanglement sources. We show that the proposed method is faithful in quantifying the classical
defects in prepared multiphoton quantum networks. Our results provide novel identification of generic
quantum networks and nonclassical correlations in graph states.
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Quantum mechanics enables nonclassical correlations
to exist across the whole of a network via connecting
individual quantum nodes, forming a joint quantum many-
body system [1]. Quantum networks [2,3] have far greater
capacity than the classical ones and serve as well-advanced
transmitters of quantum information for all the distant
network participants. Such utilities encourage important
applications in distributed quantum information process-
ing, from quantum secret sharing (QSS) [4–9] to distributed
sensing [10,11], and from distributed quantum computation
[12–15] to quantum conference key agreement and dis-
tribution [16–18]. The physical realization of these dis-
tributed quantum tasks requires suitable connectivities
between nodes and network topologies to initialize the
nodes in the multipartite entangled states, known as graph
states [19] [see Fig. 1(a)].
To establish a quantum network in graph states with

tailored topology, quantum information demands to be sent,
received, stored, and exchanged between remote quantum
nodes via photonic channels in general [1–3,32–41]. Then,
it is essential to characterize a created network before it
carries out a given distributed task, such as a QSS scheme.
A conventional way to detect entanglement in the labo-
ratory is an entanglement witness (EW), which employs
deduction from the predictions of quantum theory [42–44].

However, inevitable imperfections of network nodes, such
as the intrinsic fragility of quantum systems and errors
present in actual implementations, can cause quantum
nodes to become classical systems that obey the laws of
classical physics, therefore leading to the failure of state
preparation or decay of quantum networks [1–3,32–41].
Moreover, when network participants only have limited
knowledge about the node imperfections, the network
nodes then become untrusted to the participants as
untrusted nodes. Considering the existence of untrusted
nodes in the created network, the EW is no longer reliable
in verification of multipartite entanglement. This raises a
natural question: How can a verifier, such as the dealer in
QSS, objectively and reliably detect the presence of
classical nodes in a given network for distributed tasks?
In this Letter, we address this issue by exploiting a novel

Einstein-Podolsky-Rosen (EPR) steerability [21–23],
which is capable of excluding the existence of classical
nodes in quantum networks. More importantly, the EPR
steerability presents more fine-grained information about
the created network, i.e., the capability of counting the
number of classical nodes in the created network, which is
not possible in other schemes [44,45].
Given an ideal N-node quantum network in arbitrary

graph state jGi, where each node contains a qubit, its general
state decomposition can be explicitly expressed as [24,25]
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jGihGj ¼
X
m⃗

hm⃗ ⊗
N

k¼1
R̂mk

; ð1Þ

where hm⃗ are coefficients and R̂mk
represents the mkth

observable of the kth node. We then introduce the network
fidelity function for arbitrary target graph states jGi of N
nodes

FðNÞ ¼
X
m⃗

hm⃗hRm1
� � �RmN

i ð2Þ

where m⃗≡ ðm1;…; mNÞ andRmk
is the outcome of themkth

measurement of R̂mk
on the kth node. In our study, the

measurements on each qubit are performed with the observ-
ables in Pauli matrices, fR̂mk

jmk ¼ 0; 1; 2; 3g, where
R̂0 ¼ I, R̂1 ¼ X, R̂2 ¼ Y, and R̂3 ¼ Z. Note that the fidelity
function [Eq. (2)] is state dependent andwe obtainF ¼ 1 for
an ideal quantum network regardless of what fidelity
function is chosen. We utilize the network fidelity function,
whichmeasures the closeness of created networks and target
graph states, as the basis for counting classical nodes.

This makes our framework capable of being used in a wide
variety of circumstances and applications based on the
fidelity measure.
When classical nodes exist in the created network, the

network becomes a hybrid system consisting of nq quan-
tum nodes and nc classical nodes, where N ¼ nq þ nc. The
index set of the network nodes, V, can then be divided into
the quantum-node subset, VQ, and the classical-node
subset, Vc, accordingly. An essential difference between
quantum and classical nodes is that physical properties of
quantum nodes might not have definite values. In contrast,
variables in classical nodes are in existing states indepen-
dent of observation, known as the assumption of realism
[26,46,47]. In our framework, a node is defined as being
classical if, for any physical properties of interest, it is
classical realistic, i.e., the state of each classical node can be
specified by a preexisting and fixed set of measurement
outcomes [23]. Note that with the increase of noises, the
quantum nodes can eventually be described by the classical
realistic theory. See Supplemental Material (SM) for
detailed discussion of classical nodes [20].
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FIG. 1. Schematic drawing of the quantum network in a graph state and its experimental realization. (a) A quantum network ideally
prepared in a graph state is depicted using the graph GðV; EÞ [19,20]. The graph G consists of the vertex set V and the set E of edges
each of which joins two vertices. The vertices and the edges physically represent the qubits and the interacting pairs of qubits
respectively, and then constitute a state vector jGi of the network. A quantum network in the graph state jGi is then distributed to distant
nodes and verified by measurement apparatus. The measurement setting is chosen from set fI; X; Y; Zg, each of which has two
outcomes þ1 and −1. The blue (red) measurement apparatus represents trusted (untrusted) nodes in the quantum network. It has been
shown that arbitrary graph states among the network participants for distributed tasks can be established through a modular and plug-
and-play architecture [32]. (b) The experimental setup to generate a six-photon state in a star graph, which is equivalent to jGHZi6 via
LOCC. (c) The experimental setup to measure network fidelity F. (d) The experimental setup to generate the state in the optimal
“cheating strategy,” in which we project one photon on jξ0i according to the target state jGi. (e) the untrusted node broadcasts results
according to the measurement setting of Fð6Þ [20,29,30]. (f) Symbols used in (b), (c), and (d): 2 mm-long BBO crystal (2 mm-BBO),
1 mm-long BBO crystal (1-mm BBO), polarizer (POL), half-wave plate (HWP), quarter-wave plate (QWP), and polarization beam
splitter (PBS).
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Before the state decays, the state vector of the target
graph state can always be represented in the Schmidt form
of rank r [27]

jGi ¼ 1ffiffiffi
r

p
Xr−1
v¼0

jvisQjvisc; ð3Þ

for r ≥ 2, where fjvisQg and fjviscg are the Schmidt bases
for the nodes in the vertex sets VQ and Vc, respectively.
This representation shows us the following form under the
state decomposition [Eq. (1)] for the nodes in Vc:

jGihGj ¼ 1

r

X
v;v0;m⃗c

hvv
0

m⃗c
jvisQsQhv0j ⊗

k∈Vc

R̂mk
; ð4Þ

where jviscschv0j¼
P

m⃗c
hvv

0
m⃗c
⊗k∈Vc

R̂mk
, m⃗c ≡ fmkjk ∈ Vcg,

and hvv
0

m⃗c
denote the decomposition coefficients. With

the classical realistic theory for a complete description
of the total state of the nc classical nodes in terms of the
preexisting outcome sets: fvkjk ∈ Vcg, the network fidelity
function [Eq. (2)] can be rephrased as the following explicit
form:

F ¼ 1

r

X
v;v0;m⃗c

hvv
0

m⃗c
hjvisQsQhv0ji

�Y
k∈Vc

Rmk

�
: ð5Þ

The maximum fidelities between target graph states jGi
and N-node networks having nc classical nodes can then be
described by the equation

F nc ¼
1

4
ð1þ 2−nc=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2nc

p Þ; ð6Þ

where 1 ≤ nc ≤ N − 1, holding for arbitrary target graph
states (see SM for the detailed derivation [20]).
The threshold fidelities F nc strictly decrease with the
number of classical nodes nc. It turns out that there
exists a one-to-one correspondence between the number
of classical nodes and the relevant maximum fidelity
values. For instance, F 1 ≃ 0.6830, F 2 ≃ 0.6036, and
limnc→∞F nc ≃ 0.5000. The hybrids of quantum and
classical nodes are then comparable in fidelity to the
networks composed entirely of quantum nodes with
F ≤ F 1. This implies that the collection fF ncg≡
fF nc jnc ¼ 1; 2;…; N − 1g of the threshold fidelities can
serve as a set of graduations to indicate the degree of
network imperfection. That is, if the measured fidelity F is
found to beF n0cþ1 < F ≤ F n0c , then one can infer that there
are n0c classical nodes in the created network. Note that the
preexisting state model used here is distinct from hidden
variable models, such as the Mermin-Peres square, where
noncontextual outcomes apply to each of nine observables
for the tests of state-independent quantum contextuality in
two-qubit systems [46,48–52]. By contrast, our quantum-
classical hybrid model for the derivation of F nc combines

both preexisting outcomes from nc classical nodes and
quantum measurements performed in nq quantum nodes.
Indeed, the collection fF ncg quantitatively describes

how the nonclassical correlations among nodes of the graph
states vary between the quantum-classical hybrids. If
F > F nc for a created network, then it is impossible to
simulate the correlations between nodes using any net-
works mixed with classical defects of the minimum
classical nodes, nc. Such a quantum characteristic can be
interpreted as the genuine multi-subsystem EPR steering
[20], a new type of genuine multipartite EPR steerability
[28] of graph states [23]. Notably, the new-found criterion
F > F nc is stricter than EW F > 1=2 for genuine multi-
partite entanglement [42–44] of networks, in which a
network containing classical nodes can mimic the networks
with genuine multipartite entanglement to show
1=2 < F < F 1. This serious flaw makes the EW unreliable
in the verification of genuine multipartite entanglement for
distributed quantum tasks.
We experimentally demonstrate our protocol on multi-

partite graph states in a star graph jGstar
N i, which is

equivalent to a Greenberg-Horne-Zeilinger (GHZ) state
jGHZiN ¼ ð1= ffiffiffi

2
p Þðj0i⊗N þ j1i⊗NÞ via local operation

and classical communication (LOCC). The experimental
setup to generate a six-photon GHZ state jGHZi6 ¼
ð1= ffiffiffi

2
p ÞðjHi⊗6 þ jVi⊗6ÞwithH the horizontal polarization

and V the vertical polarization is shown in Fig. 1(b). An
experimental state, denoted as ρGHZ6 , is generated by
employing the typical spontaneous parametric down-
conversion entangled photon source and photonic interfer-
ometry technologies (see SM for more details [20]). The
network fidelity Fð6Þ of the generated state ρGHZ6 is
measured by the device shown in Fig. 1(c), which is
consisted of a quarter-wave plate (QWP), half-wave plate
(HWP), a polarization beam splitter (PBS), and two
detectors. By properly choosing the angle of the QWP
and HWP, the expected value of I, X, Y, and Z can be
readout. The experimental results of measured Fð6Þ are
shown in Fig. 2(a), from which we calculate that Fð6Þ ¼
0.792� 0.006 [shown with blue bar in Fig. 2(c)]. Then
Fð6Þ exceeds the threshold fidelity F 1 ¼ 0.683 by more
than 18 standard deviation, which indicates there is no
classical node in the tested network.
We then consider the case where nc classical nodes exist

in the N-node network, and show that FðNÞ is bounded by
the threshold fidelity F nc even with the optimal “cheating
strategy” (OCS). The OCS of one untrusted node in
bipartite quantum correlation has been well discussed
[53]. We generalize the OCS of nc untrusted (classical)
nodes existing in N-node network as: the nc untrusted
nodes first prepare the entangled state jξinq for nq trusted
(quantum) nodes based on their knowledge of the N-node
network, where nq ¼ N − nc. Then, according to the
measurement setting for the network fidelity function
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[Eq. (2)], the nc untrusted nodes broadcast their results ∈
fþ1;−1g to achieve the maximal FðNÞ [20]. The exper-
imental results of Fð6Þ under the OCS are shown in
Fig. 2(b), from which we calculate Fð6Þ ¼ 0.538�
0.007 [shown with red bar in Fig. 2(c)]. As shown in
Fig. 3(a), we can see that Fð6Þ either with nc ¼ 0 or nc ¼ 1

exceeds the EW threshold [44], which is strong evidence
that the EW is no longer reliable in quantum network
identification. However, with our criteria, the measured
Fð6Þ does not exceed the threshold fidelity F 1, which
indicates there are classical nodes in the measured network.
One may notice that, in the case of nc ¼ 1 under the OCS,
Fð6Þ ¼ 0.538� 0.007 is lower than F 3 but higher than
F 4, where the fidelity threshold overcounts the number
of classical nodes in the created network. This is caused
by the imperfections in the state preparation, where

Fð6Þ ¼ 0.792� 0.006 in the case of nc ¼ 0, and such
imperfections prevent us from achieving the optimal
fidelity F 1 ≃ 0.6830 with the OCS. These imperfections
can be evaluated by our fidelity criteria in terms of the
number of classical nodes. For F 4 < Fð6Þ ¼ 0.538�
0.007 < F 3, the quantity of classical defects in the created
network effectively equals to three classical nodes with the
optimal mimicry.
We also experimentally prepare variousN-node quantum

networks with nq up to 6 and nc up to 18, where N ¼
nq þ nc [20]. For each network, nc nodes employ the OCS
to achieve maximal network fidelity FðNÞ. The measured
FðNÞ are shown in Fig. 3(a). It is clear that FðNÞ
with nc classical nodes are bounded by the threshold
fidelity F nc. One may notice that FðNÞ decreases much
faster than F nc as nq is increased. This is mainly caused by

(a) (b)

FIG. 3. Experimental results of network fidelity FðNÞ in the network with variant quantum and classical node number nq and nc,
respectively. (a) The bars edged with a black line represent the threshold of network fidelity F nc. The filled color bars represent the
experimental measured network fidelity FðNÞ in its corresponding network. (b) The results of FðNÞ in networks with nq ¼ 1 and
nq ¼ 2. The bars represent F nc , and red (blue) dots represent the measured FðNÞ in the network with nq ¼ 1 (nq ¼ 2).

(a) (c)

(b)

FIG. 2. Experimental results of network fidelity Fð6Þ of six-node network with classical node number nc ¼ 0 and nc ¼ 1 respectively.
(a) The experimental results of network fidelity in the network with nc ¼ 0. (b) The experimental results of network fidelity
measurement in the network with nc ¼ 1. (c) The calculated Fð6Þ from the results in (a) and (b). The black dashed line is the threshold of
the EW, and the red dashed line is the threshold fidelity F 1.
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the imperfections in the state preparation, in which more
imperfections are introduced when coherently manipulat-
ing more photons. When nq ≥ 3, FðNÞ decreases below the
EW threshold (0.5) quickly as nc is increased (nc ≥ 4). We
investigate FðNÞ of networks with nq ¼ 1 and nq ¼ 2 for
large nc as the one-photon and two-photon states are
prepared with high fidelities. The results of FðNÞ for nq ¼
1 and nq ¼ 2 are particularly shown in Fig. 3(b), from
which we can see that FðNÞ fits F nc very well. We analyze
the standard deviation E of FðNÞ in verifying entanglement
and evaluating nc. We observe E > 3 when nc ≤ 6 in the
created network with nq ¼ 1 and nq ¼ 2, which reflects a
high confidence level of our criteria [20,31].
Our results, to the best of our knowledge, demonstrate

the first method capable of counting the number of classical
nodes in quantum networks. Moreover, the proposed
method reveals that the quantum-classical hybrid networks
with OCS can surpass the seminal EW threshold of
F > 1=2, which causes serious flaws in using the verifi-
cation of EW in quantum networks [44]. Our proof-of-
principle photonic networking experiments, with nq up to 6
and nc up to 18, validated the proposed threshold network
fidelities F nc , and showed the failure of using an EW for
genuine multipartite entanglement verification. Our results
therefore not only open a new way to characterize classical
defects in quantum networks [1–3,32–41] for a wide range
of distributed quantum tasks [4–18], but also provide novel
insights in multipartite nonclassical correlations in graph
states [54–56]. We expect that our formalism could be
extended to the other types of quantum states, such as W
states, for the characterization of multipartite entanglement
with further studies [42,43,57].
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