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We experimentally and computationally study the early-stage forces during intruder impacts with
granular beds in the regime where the impact velocity approaches the granular force propagation speed.
Experiments use 2D assemblies of photoelastic disks of varying stiffness, and complimentary discrete-
element simulations are performed in 2D and 3D. The peak force during the initial stages of impact and the
time at which it occurs depend only on the impact speed, the intruder diameter, the stiffness of the grains,
and the mass density of the grains according to power-law scaling forms that are not consistent with
Poncelet models, granular shock theory, or added-mass models. The insensitivity of our results to many
system details suggests that they may also apply to impacts into similar materials like foams and emulsions.
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High-speed impact by an intruder into a granular bed [1]
has broad relevance in many disciplines, including ballis-
tics [2–5], robotics [6,7], astrophysics [8], and earth science
[9]. The forces exerted by the grains on the intruder are
often well described by Poncelet models, which are
dominated by a velocity-squared drag force [10–13].
However, the initial impact forces are consistently larger
than expected from these models [4,13–19]. Very little is
known about these early-stage forces, particularly in the
high-speed regime where the impact speed v0 approaches a
characteristic force propagation speed in the granular bed
vb. In this Letter, we use experiments and simulations to
study the early-stage forces in this regime. We find that the
peak forces and associated times obey simple, power-law
scaling forms that depend only on the impact speed, the
intruder diameter, the stiffness of the grains, and the mass
density of the grains. These scaling laws do not fit within
the framework of any existing theory related to impact,
including Poncelet models, granular shock theory, and
added-mass models.
Experiments involve circular intruders falling due to

gravity and striking a collection of more than 10 000
photoelastic disks. These experiments have been used
previously to study the microscopic origins of Poncelet
drag [16,17,20], as well as the speed and spatial structure of
the propagating forces [21]. Intruders are bronze disks with
diameters D ¼ 6.35, 12.7, and 20.32 cm and masses of
M ¼ 0.062, 0.258, and 0.671 kg, respectively. We also cut
one circular intruder out of aluminum with diameter D ¼
12.7 cm with M ¼ 0.076 kg. Photoelastic particles are
made from three different materials of varying stiffness,
as described in Ref. [21]. For all particles, the force f
required to compress a particle by a distance δ is exper-
imentally found to obey f ¼ E�wdðδ=dÞα, where α ≈ 1.4,
w ¼ 3 mm is the particle thickness, d is the particle
diameter, and E� is an effective Young’s modulus. We

find E� ≈ 3, 23, and 360 MPa for soft, medium, and hard
particles, respectively. We use bidisperse mixtures: hard
particles have d ¼ 4.3 and 6 mm, and medium and soft
particles have d ¼ 6 and 9 mm. We find bulk densities
ρg ≈ 1100 kg=m3 for all three types of particles. The
velocity scale for propagating forces is set by
vb ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

E�=ρg
p

≈ 52, 145, and 572 m=s for soft, medium,
and hard particles, respectively [21]. Initial impact speeds
are 0.3 < v0 < 6 m=s, meaning that we experimentally
access impact speeds in the range 10−3 < v0=vb < 10−1.
We record results with a Photron FASTCAM SA5 at frame
rates of 10 000, 25 000, and 40 000 frames per second for
soft, medium, and hard particles, respectively. Intruder
trajectories are determined by tracking the position z of the
intruder (z ¼ 0 represents the impact point, and downward
is positive z) at each image; sample images and trajectories
are shown in Fig. 1. Since discrete differentiation of noisy
data requires a low-pass filter, we cut off some high-
frequency data in the intruder velocity v ¼ dz=dt and
acceleration a ¼ d2z=dt2, and we use a calibrated photo-
elastic signal as a secondary source of force information.
Figure 1 shows photoelastic images along with corre-

sponding trajectory plots during impacts into medium
particles (a video can be found in the Supplemental
Material of Ref. [21]). We observe similar phenomenology
for soft particles, as shown in the Supplemental Material
[22]. The force exerted by the granular material onto the
intruder shows a clear buildup to a maximum Fmax on the
intruder at time tmax (frame 3). After this, the shock wave
continues to propagate down into the material, but the force
on the intruder begins to relax. The force from tracking the
intruder (thick black curve) and from the photoelastic
signal (thin blue curve) show good agreement, confirming
that we are not missing any high-frequency dynamics from
the low-pass filtering of the trajectory. System boundaries
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do not affect our results: the boundary of the experiment is
roughly 5 particle diameters below the bottom of the image,
and the sidewalls are more than 20 particle diameters
outside the edges of the image shown, so the shock front at
tmax has not reached the boundaries in any direction. We
also verify that boundaries do not affect our results using
simulations by varying system size over a large range.
Figure 2(a) shows typical experimental trajectories. We

plot v and −Ma with respect to time after impact, and then
record Fmax ¼ −Mamax þMg, where g ¼ 9.81 m=s2, and
tmax as a function of v0, as plotted in Figs. 2(b) and 2(c).
These reveal power-law scaling for Fmax and tmax versus v0:
Fmax ∝ v4=30 and tmax ∝ v−2=30 . At small v0, Fmax appears to
plateau as expected since Fmax ≈Mg for very slow impacts,
where the granular force will increase until it approximately
balances the gravitational force. These measurements for
soft and medium particles are unambiguous (photoelastic
and tracking data agree well). Fast force dynamics for the
hard particles, with v0=vb < 10−2, cause Fmax to be under-
estimated from only tracking the intruder [20], as seen in
Fig. 2(a). The force from tracking the intruder [the thicker

black line in Fig. 2(a)] has a clear peak slightly above 10 N
during 0 < t < 0.01 s, while the photoelastic signal [the
thinner black line in Fig. 2(a)] shows a burst of peak forces:
one above 50 N and four more around 30 N during this
time. This is typical of all force measurements during
impacts into hard particles. Thus, the data for hard particles
in Fig. 2(b) is measured from video tracking and then
multiplied by a constant correction factor (roughly 4.5) to
account for this difference. The largest peak in the
photoelastic signal is not always the first one, so we
measure tmax from the video tracking data [e.g., tmax ≈
0.005 in Fig. 2(a)], which represents the mean time
associated with the burst of large forces observed in the
photoelastic signal. Similar results are found by measuring
Fmax and tmax directly from the calibrated photoelastic data,
but with significantly more scatter. The peak forces
measured in this way for hard particles is similar to the
data for soft and medium particles, as shown in Figs. 2(b)
and 2(c), albeit with slightly different phenomenology: a
burst of peak forces rather than a clear buildup and
relaxation (this is also evident from videos in the
Supplemental Material in Ref. [21]). This suggests a
possible change in behavior for v0=vb ≪ 10−2. Previous
studies using even stiffer grains [6,11] have sometimes
found Fmax ∝ v20 for similar impact speeds v0 ∼ 1 to 5 m=s
into, e.g., glass beads where E� ∼ 50–100 GPa, ρg ∼
2000 kg=m3, and thus v0=vb < 10−3.
To better understand the origins of the power-law

behavior in Figs. 2(b) and 2(c), we perform discrete-
element simulations [23,24] using Cþþ in 2D and
LAMMPS [25] (http://lammps.sandia.gov) in 3D; further
details are given in the Supplemental Material [22]. We
prepare a static, gravitationally loaded bed of 10 000 grains
in 2D and 100 000 grains in 3D, which we verify are large
enough that system boundaries (lateral or bottom) do not
affect our results in any way. Previous work has sometimes
found that the initial packing fraction plays a role in the
impact response [12,26] due to dilation (for densely
prepared systems) or compaction (for loosely prepared
systems) during shear. This effect is suppressed for fric-
tionless grains [27]. Our results are not sensitive to the
initial packing fraction of the bed or, as shown below, even
to the existence of friction at all. Thus, we conclude that
shear-induced dilation and compaction do not affect the
scaling laws we show. After preparing the bed, we then put
a circular (2D) or spherical (3D) intruder just above the bed
with downward velocity v0, after which it is free to
accelerate due to forces from grains or gravity. We observe
trajectories that are similar to those shown in Figs. 1 and 2(a),
as well as throughout the literature [14,18]. We again find

Fmax ∝ v4=30 and tmax ∝ v−2=30 , as shown in Fig. 3. At slow
speeds, the power-law scaling is cut off by Fmax ≈Mg since
gravity accelerates the intruder and generates forces
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FIG. 1. Photoelastic image sequences are shown for an impact
of the bronze intruder with D ¼ 12.7 cm at v0 ≈ 4.4 m=s into
medium particles (soft particles are shown in the Supplemental
Material [22]), with corresponding trajectories shown below.
Times marked 1–6 correspond to images 1–6 shown above. The
thick black curve comes from tracking the intruder, and the thin
blue curve is a time series of the total calibrated photoelastic
response in a region beneath the intruder.

PHYSICAL REVIEW LETTERS 124, 178002 (2020)

178002-2

http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov


comparable to its weight. This occurs at longer tmax, nearly
independent of v0.
For 2D simulations of circular intruders impacting beds

of frictional circular grains, there are nine system param-
eters: the intruder diameter D, mass M, and speed v0; the
grain diameter d, mass m, stiffness K ¼ E�w, friction
coefficient μ, and force law exponent α; and the gravita-
tional constant g. Masses per area for grains and intruder
are σi ¼ ρiw ¼ 4M=πD2 and σg ¼ ρgw ¼ 4m=πd2, where
ρi and ρg are the masses per volume and w is the thickness
of the particles (w only has meaning in the experiments).
Figures 3(a) and 3(b) show that the power-law scaling is
nearly independent of both α and μ. The lack of dependence
on μ suggests that dilation or compaction due to shear,
which only occurs for frictional grains, does not affect our
results (possibly because the material does not have time to
develop any shear-induced dilation or compaction).
Figures 3(c) and 3(d) show that the intruder weight Mg
sets the value of the plateau, as expected, but does not affect
the forces due to the power-law scaling, particularly once
σi=σg > 4. We also find our results do not explicitly depend
on d; this is implicitly shown in Fig. 4, which includes

values of d that vary by an order of magnitude in 3D
(however, we only study cases with D ≥ 5d). The remain-
ing quantities Fmax, tmax, v0, D, K, and σg form three
dimensionless groups, Fmax=KD, tmaxvb=D, and v0=vb,
where vb ¼

ffiffiffiffiffiffiffiffiffiffiffi

K=σg
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

E�=ρg
p

. Figures 4(a) and 4(b)
explicitly show that all our data for 2D frictionless
Hookean simulations collapse when Fmax=KD and
tmaxvb=D are plotted as a function of v0=vb. We note that
the collapse in Figs. 4(a) and 4(b) includes data spanning 2
orders of magnitude in K, which was not explicitly shown
in Fig. 3, but is shown in the Supplemental Material [22].
In 3D, grain-grain compression is governed by f ¼

E�d2ðδ=dÞα (along with frictional and dissipative intergrain
interactions; see Supplemental Material [22]). We again
find Fmax ∝ v4=30 and tmax ∝ v−2=30 , with a plateau at slow
speeds set by F ≈Mg. The power-law behavior is again
nearly independent of μ, α, g, d, and the mass per volume ρi
of the spherical intruder (provided ρi > ρg). The remaining
parameters Fmax, tmax, v0, E�, D, and ρg form three
dimensionless groups: Fmax=E�D2, tmaxvb=D, and v0=vb,
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FIG. 2. (a) Sample trajectories for the bronze intruder withD ¼
12.7 cm impacting into hard, medium, and soft particles. The
photoelastic force is obtained by calibrating a time series of the
photoelastic response beneath the intruder [20]. (b) Fmax and
(c) tmax are then plotted as a function of v0. Circles, squares, and
triangles represent soft, medium, and hard particles (respectively)
with bronze intruders. Stars represent impacts of aluminum
intruders into soft particles. Red, blue, and black represent
intruder diameters D ¼ 6.35, 12.7, and 20.32 cm, respectively.

FIG. 3. (a) Fmax=KD and (b) tmaxðvb=DÞ are plotted as a
function of v0=vb for 2D simulations with D ¼ 7, d ¼ 1,
σg ¼ ρgw ¼ 1, K ¼ 785, σi ¼ ρiw ¼ 4, and g ¼ 0.1 with vary-
ing grain-grain friction coefficient μ and force law exponent α,
showing that Fmax ∝ v4=30 and tmax ∝ v−2=30 are independent of μ
and α. The legend in (a) also applies to (b). (c) Fmax=KD is
plotted as a function of v0=vb for simulations with D ¼ 14,
d ¼ 1, σg ¼ ρgw ¼ 1, K ¼ 785, μ ¼ 0, α ¼ 1. The power-law
scaling is independent of varied gravitational constant g and
intruder mass density ρi=ρg; the plateau value at low v0 is
approximately equal to Mg, as expected. (d) Fmax=KD is plotted
as a function of ρi=ρg for the largest value of v0 shown in (c),
v0 ≈ vb, showing that intruder weight has little effect on the peak
force, especially when ρi > 4ρg. The legend in (d) applies to
(c) as well.
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where vb ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

E�=ρg
p

. Figures 4(c) and 4(d) show collapsed
data in 3D frictional Hertzian simulations, which are nearly
identical to the 2D frictionless Hookean results shown in
Figs. 4(a) and (b). Experimental results, plotted in
Figs. 4(e) and 4(f), are more scattered than the simulations;
this is partly expected since force is not directly measured
but inferred by tracking the intruder and, in the case of hard
particles, using a correction from a calibrated photoelastic
signal. Experimental impacts of large intruders into soft
particles appear to deviate from the scaling, which could be
due to the extreme particle deformation and collective
stiffening during these impacts [21].
Thus, we find universal scaling laws for the peak forces

and associated timescales during the early stage of high-
speed impact: Fmax ∝ KDðv0=vbÞ4=3 in 2D, Fmax ∝
E�D2ðv0=vbÞ4=3 in 3D, and tmax ∝ ðD=vbÞðv0=vbÞ−2=3 in
both 2D and 3D. As we now show, these scaling laws are
inconsistent with Poncelet, shock, and added-mass models,

suggesting that a new theory must be formulated. The
scaling Fmax ∝ v4=30 is plainly inconsistent with Poncelet
drag, where F ∝ v2. Granular shock theory [28–33], which
captures the speed of propagating forces in these experi-
ments [21], is fundamentally based on the force exponent α
and states that large stresses (compared to the prestress)
propagate at a shock speed vf, where ðvf=vbÞ ∝
ðv0=vbÞðα−1Þ=ðαþ1Þ ∝ ðPmaxÞðα−1Þ=ð2αÞ. By rearranging,

Pmax ∝ vð2αÞ=ðαþ1Þ
0 , which yields Pmax ∝ v6=50 for Hertzian

grains (where α ¼ 1.5) and Pmax ∝ v7=60 for the disks we
use (with α ≈ 1.4), which are also inconsistent with
Fmax ∝ v4=30 . Even a modified shock theory that somehow

predicted Fmax ∝ v4=30 must be fundamentally based on α.
Thus, the lack of dependence on α shown in Figs. 3(a)
and 3(b) confirms that granular shock theory cannot explain
our results.
A third possible explanation is added-mass effects [6,

34–36]. Added-mass models assume that the intruder, with
mass M, decelerates primarily due to rigid connection to a
growing mass of the material, with mass maðtÞ. Assuming
external forces are known, a mathematical form for maðtÞ
will then fully determine the trajectory, including Fmax.
This scenario is consistent with the images shown in Fig. 1,
since there is a growing cluster of grains that is connected to
the intruder. For comparison, we numerically solve added-
mass dynamics (see Supplemental Material [22] for
details), assuming the added mass is a half circle (in
2D) or sphere (in 3D) with a radius R that grows at the
force propagation speed vf, i.e., R ¼ vft, as suggested by
Fig. 1. This gives maðtÞ ¼ πðvftÞ2=2 in 2D and maðtÞ ¼
2πðvftÞ3=3 in 3D, with vf as a constant (true for a Hookean
force law). Solving this model yields Fmax ¼ Av0 in 2D
and 3D, not Fmax ∝ v4=30 ; A ∝ M1=2 in 2D and A ∝ M2=3 in
3D; and tmax independent of v0, not tmax ∝ ðv0Þ−2=3. It is
possible that Fmax ∝ v4=30 could be obtained for some
choice maðtÞ, but A always increases with M for the forms
of maðtÞ that we try, as well as in the theoretical analysis in
Ref. [36] of the added-mass model from Ref. [35]. This is
inconsistent with the lack of dependence on ρi, shown in
Figs. 3(c) and 3(d).
We note that the soft repulsive disks and spheres used in

the simulations are commonly used to model other soft
particulate media (like foams or emulsions), suggesting
that this description will likely apply to a much broader
group of materials. We also note that the maximum grain
compression δmax can be easily estimated from the scaling
laws we show, which could be used to predict grain fracture
or crushing. In 3D, with Pmax ¼ Fmax=D2, the maximum
force felt by a grain is fmax ∼ Pmaxd2 ∼ d2E�ðv0=vbÞ4=3.
For the Hookean force law, fmax ¼ E�dδmax, so
δmax=d ∼ ðv0=vbÞ4=3. This is why we do not show any
impacts with v0 > vb: grain-grain overlaps in simulations
became similar to the size of a grain. Physical grains would
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FIG. 4. Scaled plots of Fmax and tmax versus v0 for (a),(b)
simulationsof2Dfrictionlessgrainswithα ¼ 1; (c),(d) simulations
of 3D frictional grainswithα ¼ 1.5; and (e),(f) 2D frictional grains
from experiment, with α ≈ 1.4. The symbols in (e),(f) are the same
as Figs. 2(c) and 2(d); For simulations shown in (a)–(d), the full
symbol list is given in the Supplemental Material [22]. Plateau
values for small v0=vb are set by Fmax ≈Mg.
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certainly be crushed or fractured in this regime, and other
physics would likely become dominant.
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