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(Received 4 November 2019; accepted 18 March 2020; published 30 April 2020; corrected 2 July 2020)

The dimerized quantum magnet BaCuSi2O6 was proposed as an example of “dimensional reduction”
arising near the magnetic-field-induced quantum critical point (QCP) due to perfect geometrical frustration
of its interbilayer interactions. We demonstrate by high-resolution neutron spectroscopy experiments that
the effective intrabilayer interactions are ferromagnetic, thereby excluding frustration. We explain the
apparent dimensional reduction by establishing the presence of three magnetically inequivalent bilayers,
with ratios 3∶2∶1, whose differing interaction parameters create an extra field-temperature scaling regime
near the QCP with a nontrivial but nonuniversal exponent. We demonstrate by detailed quantum
Monte Carlo simulations that the magnetic interaction parameters we deduce can account for all the
measured properties of BaCuSi2O6, opening the way to a quantitative understanding of nonuniversal
scaling in any modulated layered system.
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A foundation stone of statistical physics is the theory of
classical and quantum criticality [1,2], which states that all
physical properties around a quantum phase transition
(QPT) obey universal scaling laws dependent only on
the dimension of space d and the dynamical exponent z
(the “dimension of time” arising from the dispersionω ∝ kz

of low-energy excitations). The idea that perfectly frus-
trated competing interactions could lead to an effective
reduction of d has been both proposed [3–5] and contested
[6–8] to explain the physics of BaCuSi2O6. This S ¼ 1=2
material, known as Han purple from its use as a pigment in
ancient China [9,10], presents a three-dimensional (3D)
stack of Cu2þ bilayers [Fig. 1(a)] with dominant antiferro-
magnetic (AF) dimerization, significant intrabilayer inter-
actions, and a geometrically exact offset between adjacent
bilayers, but was reported to show 2D scaling exponents
around the field-induced QPT [3]. The discovery of
inequivalent bilayers in BaCuSi2O6 [11,12] raised the
question of whether frustration or structural modulation,
or both, would be required to explain the apparent dimen-
sional reduction [3]; despite intensive investigation
[4,5,7,8,12–16], this issue has yet to be resolved, with
far-reaching implications for any layered material.
While field-driven QPTs from the “quantum disordered”

dimerized state to the field-induced ordered state have

remained a hot topic in quantum magnetism for multiple
reasons (“Bose-Einstein condensation of magnons”) [17],
several recent developments make this the right time to
revisit dimensional reduction in BaCuSi2O6. First, an
ab initio analysis of the magnetic interactions has suggested
that the effective intrabilayer interactions are ferromagnetic
(FM) [18], which would preclude a frustration scenario.
Second, a systematic structural determination [16] has
confirmed at minimum two inequivalent and alternating
bilayer units. Third, a new generation of time-of-flight
(TOF) neutron spectrometers now allows magnetic exci-
tations in materials such as BaCuSi2O6 to be characterized
with unprecedentedly high resolution and across multiple
Brillouin zones.
In this Letter, we report the results of neutron spectroscopy

experiments performed to determine the full magnetic
Hamiltonian of BaCuSi2O6. We verify that the effective
intrabilayer interaction parameter is FM, establish the pres-
ence of three inequivalent bilayers with number ratios 3∶2∶1
and determine the very weak interbilayer interaction. We
demonstrate by quantum Monte Carlo (QMC) simulations
that our deduced interactions are completely consistent with
all prior experimental data for the magnetization, phase
diagram, layer triplet populations, and quantum critical
behavior. Our conclusion that structural modulation creates
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an additional regime of unconventional effective scaling
behavior will have broad applicability in the age of designer
assembly of atomically thin magnetic materials.
The room-temperature crystal structure of BaCuSi2O6 is

tetragonal, but becomes weakly orthorhombic below 90 K
[19–21]. As Fig. 1(a) represents, the stacked “bilayers,”
square lattices of Cu2þ spin dimers, have a relative shift of
ð 1
2

1
2
Þ in the ab plane [in the minimal unit cell of one

bilayer [9,22], represented in Fig. 1(b)]. The orthorhombic
phase contains at least two structurally distinct bilayer
types [16,19], presumably with different intrabilayer inter-
action parameters, and with a very weak supercell structure
showing incommensurate peaks [12] near Qk ¼ 1=8 [19].
Using the crystallographic unit cell [16,19] [Fig. 1(b)] to
interpret the measured dispersion relations [11] creates an
ambiguity between FM and AF intrabilayer interactions, as
detailed in Sec. S1 of the Supplemental Material (SM) [23],
which we resolve by working in the minimal unit cell.
From the experimental map of the dynamical structure
factor that we obtain over multiple Brillouin zones, we
demonstrate that the minimal magnetic model is that shown
in Fig. 1(a) and deduce the values of all the interaction
parameters.

We have performed high-resolution inelastic neutron
scattering (INS) measurements on the direct-geometry TOF
spectrometers AMATERAS at the J-PARC neutron source
[37] and LET at ISIS [38]. Respective measurement
temperatures were 0.3 and 1.6 K. On both instruments,
incident neutrons of energy Ei ¼ 9 meV observe the full
band width of the magnetic excitations (3–6 meV at zero
applied field). The triple-axis spectrometers TASP and
EIGER at the SINQ neutron source [39] were used for
further investigation of selected Q⃗ directions, measuring at
1.6 K on both. All experiments used one BaCuSi2O6 single
crystal, of weight 1.01 g, which we discuss in Sec. S2 of the
SM [23].
TOF intensity data for four high-symmetry directions

in Q⃗ space are shown as functions of energy transfer in
Figs. 2(a)–2(d). Figures 3(a) and 3(b) show the measured
mode energies and Figs. 3(c) and 3(d) their intensities, both
obtained using Gaussian fits for selected Q⃗ points. The
EIGER data integrate over a broad energy range to obtain
high-statistics information for the combinedmode intensities
over an extended jQ⃗j range.Details of data preprocessing and
the Gaussian fitting procedure are presented in Sec. S3 of the
SM [23].
Our results show clearly the presence of three distinct

excitations in large regions of the Brillouin zone [Figs. 2(a),
2(b), 2(d), and 3(a)]. These must result from three different
types of bilayer, and so we label them A, B, and C in
ascending order of energy. This confirms the result of
Ref. [11], but over a much wider jQ⃗j range. Where only two
modes are visible because B and C are close in energy
[Figs. 2(c) and 3(b)], we label the effective composite
mode Bþ C.
We draw attention to three qualitative features of our

data, which all lie beyond the results of Ref. [11]. (i) The
minima of the strongly dispersive modes in Figs. 2(a), 2(b),
and 3(a) give an unambiguous statement about the sign of
the intrabilayer interactions when working in the minimal
unit cell. (ii) Although the interbilayer interaction is very
weak, making the bands in Fig. 2(c) almost flat, it can be
determined from the variation of the intensity with Ql.
(iii) Where this band dispersion becomes Ql independent,
in Fig. 2(d), the data can be used to establish the relative
intensities of the three separate bilayer contributions.
The magnetic excitations of the dimerized S ¼ 1=2

system are “triplon” quasiparticles. To model the triplon
spectrum in BaCuSi2O6, we generalized the method of
Refs. [40,41] as outlined in Sec. S4 of the SM [23]. We
assume that the only magnetic interactions are those of
Fig. 1(a) and, given the weak anisotropies measured in
BaCuSi2O6 [42], that they have purely Heisenberg char-
acter. A quantitative fit of the complete mode energy and
intensity data yields the intradimer interaction parameters
JA ¼ 4.275ð5Þ, JB ¼ 4.72ð1Þ, and JC ¼ 4.95ð2Þ meV,
intrabilayer interactions J0A ¼ −0.480ð3Þ, J0B¼−0.497ð8Þ,
and J0C¼−0.57ð1ÞmeV, and the interbilayer interaction

(a)

(b)

FIG. 1. (a) Schematic representation of one unit cell of the
minimal magnetic model for BaCuSi2O6; fJσ ; J0σ ; J00g are Hei-
senberg interactions. The three distinct bilayer types are labeled
A, B, and C. The effective interdimer interaction parameters
within each bilayer (J0σ , edges of colored squares) result from four
pairwise ionic interactions (inset). (b) Top view of the ab plane.
The minimal unit cell, containing one dimer per bilayer [9,22],
has basis vectors fâ0; b̂0; ĉ0g; the crystallographic unit cell, used
in previous scattering studies [11,16,19], has basis fâ; b̂; ĉg and
contains two.
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J00 ¼ −0.04ð1Þ meV, where J > 0 refers to AF interactions
and J < 0 to FM. The quoted errors are statistical. These
optimal values were used to calculate the spectra shown in
Figs. 2(e)–2(h) and as the lines in Fig. 3. As part of the
fitting process, we used the high-jQ⃗j EIGER data to deduce
the anisotropic magnetic form factor (Sec. S5 of the
SM [23]), which confirms the concentration of spin density
within the bilayers [18,42]. We compare our interaction
parameters with those deduced from previous INS studies
[11,22] in Sec. S6 of the SM [23].
Returning to the primary experimental observations,

(i) the positions of the minima and maxima of the dis-
persive modes in ðQh 0 4Þ and ðQh Qh 4Þ are
characteristic of FM effective intrabilayer interactions.
Because each J0σ is the sum of four interionic interactions,
which are generally AF, their sign indicates that the
diagonal interactions represented in the inset of Fig. 1(a)
are dominant [18]. For effective AF interactions, the
positions of the maxima and minima would be exchanged;
INS spectra calculated for intra- and interbilayer inter-
actions of different signs are shown in Sec. S6 of the SM
[23]. We stress again that FM intrabilayer interactions mean
there is no interbilayer frustration in BaCuSi2O6.
(ii) While the very weak J00 results in almost flat modes

along ð0 0 QlÞ [Figs. 2(c) and 3(b)], the mode inten-
sities are Ql dependent, displaying a double-peak structure
in mode A with maxima at Ql ¼ 3 and 5 [Figs. 2(c)

and 3(d)]. This feature, which allows us to fit J00, could not
be resolved at all in Ref. [11] and was revealed only by
using optimized chopper settings on both high-resolution
TOF spectrometers. The fact that the double peak appears
in A is a direct consequence of a FM J00; an AF interbilayer
interaction would cause it to appear in Bþ C (Sec. S6 of
the SM [23]).
(iii) Because the ð1 0 QlÞ dispersion [Fig. 2(d)] is Ql

invariant, it is of particular value for a quantitative
determination of the relative fractions of each bilayer type.
The large detector coverage of LET and AMATERAS
allowed us to obtain high-quality data not available
in previous experiments [11]. The Q⃗-integrated intensity
shown in the inset of Fig. 2(h) establishes that the
three types of bilayer are present in the approximate
ratios A∶B∶C ¼ 3∶2∶1, as detailed in Sec. S7 of the SM
[23]. This information, which makes completely specific
the average structure reported in Ref. [16], is the foundation
for the ABABAC bilayer sequence in the minimal model
[Fig. 1(a)]. This model manifestly allows a highly accurate
determination of the magnetic interactions and provides an
excellent account of the measured spectra, in which neither
the very weak orthorhombicity [b=a ¼ 1.00167ð1Þ [16] ]
nor the incommensurability [12,19] of the crystal structure
plays a role.
The signs and sizes of the interaction parameters we

deduce are fully consistent with the ab initio analysis [18].

FIG. 2. (a)–(d) Intensity, IðQ⃗;ωÞ, measured on AMATERAS for selected high-symmetry directions. (e)–(h) Corresponding spectra
calculated with the fitted interaction parameters. Q⃗ is indexed in reciprocal lattice units (r.l.u.) of the crystallographic unit cell. Inset in
(h) shows the intensity IðωÞ obtainedby integrating over the Q⃗ ranges [0.95, 1.05] inQh, [−0.05, 0.05] inQk, and [4, 8] inQl (denotedby Q̄l).
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Assuming negligible magnetostriction, these zero-field
parameters have immediate consequences for the field-
temperature phase diagram and the field-induced QPT.
Based on the initial work of Refs. [43,44], many authors
have discussed their BaCuSi2O6 data [3,11–13] and models
[4,5,7,8,14,15,45] by assuming AF intrabilayer inter-
actions, and hence strong interbilayer frustration, begging
the question of how to understand these measurements
when frustration is entirely absent. To address this issue in a
fully quantitative manner, we perform state-of-the-art
stochastic series expansion QMC simulations [46] of the
six-bilayer (ABABAC) model of Fig. 1 using the interaction
parameters we determine by INS.
We simulate an effective Hamiltonian of hard-core

bosons [47], to reduce the computational cost, on lattices
of size 3L3 up to L ¼ 22 (equivalent to 63 888 spins);
details are presented in Sec. S8 of the SM [23]. We
calculate the temperature TcðHÞ of the field-induced order-
ing transition from the scaled spin stiffness Lðdþz−2ÞρðL; TÞ
[48], obtaining complete quantitative agreement with the
phase boundary measured in Refs. [3,12,43] over the entire
range of field-induced magnetic order [Fig. 4(a)]. Here we
have fixed gk ¼ 2.435 so that the lower critical field is
Hc1 ¼ 23.4 T, matching the best estimate available from
nuclear magnetic resonance (NMR) [13]. Thus the agree-
ment in Fig. 4(a) is achieved with no adjustable parameters,
which, even in comparison with other well-characterized
quantum magnets [17], is quite remarkable.
In Fig. 4(b) we show the field-induced triplet densities in

all three bilayers at a fixed low temperature of T ¼ 100 mK.
Clearly the A-bilayer density ρA rises rapidly and near
linearly in h ¼ H −Hc1, whereas ρB and ρC rise slowlywith

leading linear and quadratic components, in agreement with
the NMR determination of ρA and ρB [13]. The magnetic
order parameter is determined by the effective triplet
tunneling between the A bilayers teff3DðhÞ, which is limited
by the low triplet densities in the B and C bilayers (whose
individual gaps have not yet closed).At lowdensities, teff3DðhÞ
is proportional to the ratios rBA ¼ ρB=ρA and rCA [14], and
thus close to Hc1 takes the generic form

teff3DðhÞ ¼ teffc þ a1hþ a2h2 þOðh3Þ: ð1Þ

rBA and rCA grow smoothly at H > Hc1 [inset, Fig. 4(b)]
and, crucially, remain finite at H ¼ Hc1, giving a finite teffc
(which is the case for any incomplete frustration [8,13,15]).
Thus, as h → 0, the condensed triplets have a strongly
anisotropic but 3D dispersion and the critical behavior of the
phase boundary is described by the exponent ϕ ¼ z=d ¼
2=3 of a fully 3D QPT.
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FIG. 4. QMC results for the ABABAC model. (a) (H, T) phase
diagram of the field-induced ordered regime, compared with
experimental data from Refs. [3,12,43]. (Inset) Power-law scaling
obtained for ABABAC and AB models (see text) and compared
with the scaling forms of pure 2D (ϕ ¼ 1) and 3D (ϕ ¼ 2=3)
criticality. (b) Triplet populations in the three types of bilayer,
computed for 1536 dimer units and shown as a function of field at
T ¼ 100 mK. (Inset) Population ratios. (c) Effective exponent ϕ
extracted from power-law fits of the QMC data [inset (a)] to a
window of width hwindow.

FIG. 3. Mode energies and intensities. All data other than the
open circles in (c) and (d) are from AMATERAS. Lines show
calculated results; in (a) and (b) the solid blue line represents B,
whereas in (c) and (d) it represents the contribution of Bþ C. The
dashed green line denotes the energy of C calculated in the range
where it was not distinguishable in experiment.

PHYSICAL REVIEW LETTERS 124, 177205 (2020)

177205-4



However, the structural modulation introduces a new
energy scale JB − JA and with it an energy scale
ðJ00Þ2=ðJB − JAÞ [14]. Temperatures above this latter scale
(approximately 0.04 K) may act to decouple the A bilayers,
leading to an anomalous effective exponent ϕðhÞ over a
range of h. This is corroborated by our QMC results for
TcðHÞ in the candidate quantum critical regime [inset,
Fig. 4(a)], both for the ABABAC model of BaCuSi2O6 and
for a simplified two-layer AB model giving access to lower
temperatures. We extract an effective ϕ by power-law fits in
a window of width hwindow and find [Fig. 4(c)] that it does
not show accurate 3D scaling for any realistic hwindow, but
also never approaches 2D scaling. Only for hwindow <
0.08 T do our AB-model data suggest that the genuine
3D critical scaling regime is entered. Above this we
demonstrate a clear crossover into an additional regime
of nontrivial effective scaling, arising due to bilayer
modulation, in which ϕðhÞ is determined by the field
evolution of teff3DðhÞ.
We therefore verify that the ABABAC model with an

unfrustrated interbilayer interaction is fully consistent
with all of the previous, highly detailed experiments that
have probed the properties of BaCuSi2O6 [3,11–13,16,
19–21,42–44]. The appearance of dimensional reduction
near the QPT [3] is a consequence only of the inequivalent
bilayer units and not of frustration [8]. The unconventional
physics in this previously unrecognized regime is contained
in the effective triplet tunneling between A bilayers
[Eq. (1)], where teffc ≠ 0 ensures both a finite (if narrow)
regime of 3D scaling (the true QPT is always 3D) and
a nonuniversal window-dependent scaling regime with
2=3 < ϕ < 1. With rapidly improving technological capa-
bilities for building atomically layered magnetic materials
[49–54], this type of knowledge concerning emergent
behavior due to layer modulation will be essential to the
design of their physical properties.
In summary, we report high-resolution INS measure-

ments over the full bandwidth of the magnetic excitations in
BaCuSi2O6. We have determined the minimal magnetic
Hamiltonian required to model the spectrum and find that it
contains three different bilayer types in the ratios 3∶2∶1.
We verify that the effective intrabilayer interaction param-
eters are ferromagnetic, which precludes any interbilayer
frustration. We perform QMC simulations of the full
magnetic model to demonstrate that our parameters account
with quantitative accuracy both for the entire (H, T) phase
boundary and for its anomalous scaling within a window of
width 1 K near the QPT.
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