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The S ¼ 1 Affleck-Kennedy-Lieb-Tasaki (AKLT) quantum spin chain was the first rigorous example of
an isotropic spin system in the Haldane phase. The conjecture that the S ¼ 3=2 AKLT model on the
hexagonal lattice is also in a gapped phase has remained open, despite being a fundamental problem of
ongoing relevance to condensed-matter physics and quantum information theory. Here we confirm this
conjecture by demonstrating the size-independent lower bound Δ > 0.006 on the spectral gap of the
hexagonal model with periodic boundary conditions in the thermodynamic limit. Our approach consists of
two steps combining mathematical physics and high-precision computational physics. We first prove a
mathematical finite-size criterion which gives an analytical, size-independent bound on the spectral gap if
the gap of a particular cut-out subsystem of 36 spins exceeds a certain threshold value. Then we verify the
finite-size criterion numerically by performing state-of-the-art DMRG calculations on the subsystem.
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The manifestations of antiferromagnetism in quantum
spin systems depend sensitively on the underlying geometry
and spin number. A subtle and famous instance of this
connection was proposed by Haldane, who predicted in
1983 that the Heisenberg spin chain has a spectral gap above
the ground state whenever the spin S per site is an integer
[1,2]. Motivated by his considerations, Affleck, Kennedy,
Lieb, and Tasaki (AKLT) introduced a new family of
quantum spin systems in 1987 and proved that their one-
dimensional S ¼ 1 version is indeed in Haldane’s epony-
mous quantum phase [3,4]. The influence of the seminal
AKLT papers continues to this day: the valence-bond solid
(VBS) aspect of the AKLT construction directly inspired the
development of concepts that are by now central tenets of
modern quantum physics, such as matrix product states,
projected entangled pair states (PEPS), and more generally
tensor network states [5–11]. Moreover, the nonlocal string
order exhibited by the AKLT chain [12–14] has been
developed much further into the more general concept of
symmetry-protected topological order [15–18]. Finally, the
AKLT ground states on some two-dimensional lattices,
including the S ¼ 3=2 model on the hexagonal lattice,
provide rare instances of a universal resource state for
measurement-based quantum computation (MBQC)
[19–22].
One of the main accomplishments of the original AKLT

works [3,4] is the rigorous derivation of a spectral gap
above the AKLT ground state in one dimension. AKLTalso
investigated the S ¼ 3=2 model on the hexagonal lattice

and were able to demonstrate the exponential decay of the
spin-spin correlations for the exact VBS ground state with
periodic boundary conditions, and on the basis of this fact
they conjectured that the hexagonal model also exhibits a
spectral gap (see also [23]). We recall that a spectral gap
implies the decay of ground state correlations, but not vice
versa [24–28]. Evidence pointing to a spectral gap has been
mounting [23,29–34], but, despite the paradigmatic role
played by the hexagonal AKLT model, the long-standing
fundamental problem to show that its spectrum is gapped
has remained unresolved. The presence of a gap would
have broader consequences, e.g., in supporting the wide-
spread heuristic that PEPS arise from gapped Hamiltonians,
see the recent review [35], and for the complexity and
stability of the corresponding universal resource states for
MBQC [19–22]. One of the main reasons why the AKLT
conjecture has remained unresolved is that, while the
ground states of the hexagonal AKLT model can be written
down exactly, only very little is known about its excited
states. More generally, the existing mathematical tech-
niques for deriving spectral gaps in quantum spin systems
of dimensions ≥ 2 are quite limited. Few examples where a
spectral gap is known to exist include the product vacua
with boundary states models [36–38] and, since recently,
decorated variants of the AKLT models [29,34].
In this Letter, we confirm the AKLT conjecture by

demonstrating a lower bound, Δ > 0.006, on the spectral
gap of the hexagonal model. More precisely, we consider a
sequence of AKLT models where the hexagonal lattice is
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wrapped on an m1 ×m2 torus and show that their spectral
gaps are all bounded from below by 0.006 for arbitrarily
large system-size parameters m1 and m2; see Fig. 1 for the
definition of the periodic boundary conditions on a 6 × 4
torus. Methodologically, our approach consists of two
steps. Step 1 comes from mathematical physics and step
2 is based on state-of-the-art computational physics. In step
1, we prove a mathematical finite-size criterion which is
tailor-made for the problem at hand. In a nutshell, the finite-
size criterion says that if the spectral gap of the 36-site
cluster displayed in Fig. 2 exceeds an explicit numerical
threshold, then the AKLT model has a spectral gap for all
system sizes m1, m2. To prove the criterion, we follow the
combinatorial approach pioneered by Knabe [32], strength-
ened by using interaction weights as in Refs. [39,40].
In step 2, we combine the rigorous analytical insight from
step 1 by numerically verifying the finite-size criterion
via a high-precision density-matrix renormalization group
(DMRG)calculation (see alsoRef. [33] for a one-dimensional
analog studied with Lanczos diagonalization). We present
tests of the correctness of our implementation of the well-
established DMRG method in the Supplemental Material
[41]. Since it is not possible to establish a rigorous precise
estimate of any remaining convergence errors, our result may
not be considered a rigorousmathematical proof as amatter of
principle.However, in practice, the computed gap exceeds the
threshold by such a wide margin that it can be regarded as a
conclusive demonstration.
One challenge in the numerical part of the argument is

that the relevant open-boundary system (Fig. 2), whose gap
we need to compute, has a massive ground state degeneracy
due to the 12 “dangling” effective boundary S ¼ 1 spins
which arise in the AKLT construction when only one out of
the three nearest-neighbor couplings is active. This results

in a 312-fold ground state degeneracy. To reduce the
number of levels which have to be converged, we use a
variant of DMRG with full SU(2) symmetry and calculate
the ground state and several excited states over all sectors of
total spin. Crucially, in the process of successively ortho-
gonalizing the calculations to previously converged states,
we have used the AKLT construction to exactly project out
the full degenerate subspace. Without this preliminary step,
which we discuss further below and describe in more detail
in [41], it would currently not be possible to converge the
excited states in all total spin (J) sectors and conclusively
identify the smallest gap of the system. We find that the
lowest gap originates from the J ¼ 13 sector and that it
exceeds the analytical gap threshold well beyond any
conceivable remaining DMRG truncation errors.
Our main result is a size-independent lower bound on the

spectral gap of the AKLT Hamiltonian on finite patches of
the hexagonal lattice H with periodic boundary conditions,
which we call Λm1;m2

. The key point is that the lower bound
on the gap is independent of the size parametersm1 and m2

of these patches and thus extends to the thermody-
namic limit.
For m1 and m2 two positive integers, the finite patch

Λm1;m2
is defined by wrapping the hexagonal lattice on an

m1 ×m2 torus. We invite the reader to view Fig. 1 for a
specific example of how the periodic boundary conditions
are realized. Since the hexagonal lattice has valence 3, one
takes each site to host an S ¼ 3=2 spin and considers the
Hilbert space

Hm1;m2
¼ ⊗

j∈Λm1 ;m2

C4: ð1Þ

On Hm1;m2
, the AKLT Hamiltonian is defined by

FIG. 1. The patch Λm1;m2
with parameters m1 ¼ 6 and m2 ¼ 4.

(m1 and m2 are the width and height of Λm1;m2
in units of

hexagonal cells, respectively.) Periodic boundary conditions are
imposed by identifying the boundary vertices which are assigned
the same letter. Note that the letters A and B appear three times in
total.

FIG. 2. The fixed-size patch F whose spectral gap we compute
numerically. It is equipped with open boundary conditions, in
contrast to Λm1;m2. The weights we in Eq. (5) are assigned as
follows: dashed edges are weighted by we ¼ a ≥ 1 as indicated,
while all other edges are unweighted (i.e., we ¼ 1).
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HAKLT
m1;m2

¼
X

j;k∈Λm1 ;m2
∶

j∼k

Pð3Þ
j;k ; ð2Þ

where Pð3Þ
j;k denotes the projection onto total spin 3 across

the bond connecting vertices j and k. By convention, the
neighboring relation ∼ includes the periodic boundary
conditions inherent to Λm1;m2

.
As a sum of projections, the Hamiltonian HAKLT

m1;m2
is

automatically a positive semidefinite operator. The valence-
bond construction of AKLT [3,4] yields a ground state
which is a nonzero element of kerHAKLT

m1;m2
, making this

Hamiltonian frustration-free. Its spectral gap γAKLTm1;m2
is the

smallest strictly positive eigenvalue, that is,

γAKLTm1;m2
¼ inf specðHAKLT

m1;m2
Þnf0g: ð3Þ

We can now state our main result, which provides a
lower bound on the spectral gap γAKLTm1;m2

that is independent
of the system size parameters m1 and m2.
Main result.—Let m1, m2 ≥ 12. Then, it holds that

γAKLTm1;m2
≥ 0.00646: ð4Þ

A few remarks about this result are in order: (i) We work
with periodic boundary conditions for convenience and the
results imply a bulk gap in the thermodynamic limit under
these boundary conditions. Moreover, it was proved in
Ref. [23] that the infinite-volume ground state is unique.
(ii) This main result is not a rigorous mathematical theorem
because it relies on numerical input from the DMRG
algorithm. While the DMRG algorithm becomes exact
for large bond dimension and the computations are suffi-
ciently precise and well-tested to firmly establish (4)
beyond doubt, we do not claim to have a mathematical
proof of sufficiently tight error estimates. (iii) From pre-
vious numerical investigations, see e.g., [31], it is believed
that the true spectral gap of the hexagonal model is ≈0.1,
but the results depend on extrapolations in the system size
that assume an asymptotic scaling regime has been reached.
The finite-size criterion.—We now discuss the main

mathematical tool, which is a finite-size criterion for
deriving a spectral gap. In a nutshell, it says that if the
spectral gap of the systemF depicted in Fig. 2 exceeds some
explicit numerical threshold, then we also obtain a lower
bound on the spectral gap γAKLTm1;m2

that is independent of the
size parameters m1, m2 as desired. The intuition behind the
finite-size criterion is that, thanks to the frustration-freeness
of the AKLTHamiltonian, the problem of finding the lowest
possible excitation energy (gap) is a local question. Hence, it
is enough to know that local patches of thewhole system are
“sufficiently gapped” in a way that the criterion makes
precise. For related finite-size criteria that ours here is
inspired by, see Refs. [32,33,39,40,44–46]. The idea behind
the finite-size criterion is to constructHAKLT

m1;m2
from translated

copies of an appropriate finite-size Hamiltonian, which we
callHF . For the criterion towork in practice, the patch has to
be sufficiently large because the criterion depends on the
cluster size and shape, and even if there is a gap in the
thermodynamic limit the finite-size criterion may not be
satisfied on a small cluster. Our criterion is based on the
following Hamiltonian HF defined on the 36-site patch F
shown in Fig. 2, with open boundary conditions.
The patch lives on the local Hilbert space HF ¼ ⊗

j∈F
C4.

We write EF for the set of edges e ¼ ðj; kÞ with j; k ∈ F ,
i.e., we equipF with open boundary conditions (in contrast
to Λm1;m2

). Let a ≥ 1 be a parameter. We define the finite-
size Hamiltonian by

HF ¼
X

e∈EF

weP
ð3Þ
e ; ð5Þ

where Pð3Þ
e is the projection onto total spin 3 for the pair of

vertices j, k that form the end points of the edge e. The
weights we are defined as follows:

we ¼
�
a; if the edge e is labeled bya in Fig: 2;

1; otherwise:
ð6Þ

The valence-bond ground state construction of AKLT
[3,4] still applies toHF and proves that it is frustration-free.
Its spectral gap is γF ðaÞ ¼ inf specðHF Þnf0g.
Theorem.—(The finite-size criterion) Let m1, m2 ≥ 12

be integers and let a ≥ 1. Then we have the gap bound

γAKLTm1;m2
≥

10þ 4a
3a2 þ 2aþ 7

�
γF ðaÞ −

a2 − 2aþ 3

10þ 4a

�
: ð7Þ

The general way of applying this theorem is as follows: if
for some parameter value a ≥ 1, one finds that the finite-
size gap γF ðaÞ exceeds the threshold f½a2 − 2aþ 3�=
½10þ 4a�g, then (7) provides a lower bound on γAKLTm1;m2

that
is independent of m1, m2 (subject to m1, m2 ≥ 12 of
course). The proof of the finite-size criterion is deferred to
the Supplemental Material [41].
We now follow this procedure to show the spectral gap

bound (4). As explained in detail further below, by a
numerical DMRG calculation we obtain the following
explicit lower bound on the finite-size gap γF ðaÞ with
a ¼ 1.4,

γF ð1.4Þ > 0.145: ð8Þ

This value exceeds the gap threshold f½a2 − 2aþ 3�=
½10þ 4a�g ≈ 0.138 and thus verifies the finite-size cri-
terion. The exact numerical bound on γAKLTm1;m2

can be
computed by noting that f½a2 − 2aþ 3�=½10þ 4a�g <
0.1385 and f½10þ 4a�=½3a2 þ 2aþ 7�g > 0.994, which
together with (8) can be applied to (7) to show
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γAKLTm1;m2
≥ 0.994

�
0.145 −

a2 − 2aþ 3

10þ 4a

�
≥ 0.00646:

This establishes the main result, the spectral gap bound (4).
DMRG calculations.—We next discuss our implemen-

tation of the DMRG algorithm and results for the gap of the
open boundary 36-site cluster F shown in Fig. 2.
Additional details, including detailed convergence tests,
are relegated to the Supplemental Material [41].
The ground states of the cluster F can be understood as

follows: each physical S ¼ 3=2 spin is made out of three
auxiliaryS ¼ 1=2 spins, each ofwhichwill pairwith another
auxiliary S ¼ 1=2 from a neighboring site, forming a singlet
and dropping out. This construction ensures that any pair of
neighboring physical S ¼ 3=2 spins can never fuse into a
total spin-3 state, and the AKLT ground state condition is
therefore fulfilled.However, on the open boundary sites, two
auxiliary S ¼ 1=2 spins per site are left over, and these are
only allowed to fuse into an S ¼ 1 state due to the symmetric
constraint. Therefore, there are 12 boundary S ¼ 1 degrees
of freedom that can formany total spin0 ≤ J ≤ 12, spanning
a degenerate ground state manifold of dimension 312. The
lowest excitation above the ground states, which can be
interpreted as swapping a bulk singlet with a triplet that
further fuses with the boundary total angular momentum,
can in principle form any angularmomentum 0 ≤ J ≤ 13. In
order to conclusively determine the smallest nonzero gap
among all possible total-spin sectors, one has to find the
lowest excitation in every sector J ∈ f0; 1;…; 13g. For even
higher J sectors, the lowest excitation requires breaking
more than one singlet and therefore costs significantly more
energy. For completeness, we also computed the gaps in all
other sectors where J > 13.
An SU(2) symmetric DMRG algorithm is used to

automatically generate the degenerate ground state mani-
fold in all sectors of total spin J ∈ f0; 1;…; 12g and
compute the lowest excited state therein by projecting
out the complete ground state manifold exactly. Two of us
previously used such an orthogonalization procedure for
successively converging excited states of a different model
[47], but here the simple form of the degenerate AKLT
ground-state manifold enables us to eliminate it directly.
Let L denote the maximum-spin multiplet formed by the
unpaired boundary S ¼ 1 spins in the ground state mani-
fold. For the 36-site cluster in Fig. 2, we have L ¼ 12. The
ground state manifold contains the following number of
states with total spin J: 4213 (J ¼ 0), 11298 (J ¼ 1),
15026 (J ¼ 2), 14938 (J ¼ 3), 12078 (J ¼ 4), 8162
(J ¼ 5), 4642 (J ¼ 6), 2211 (J ¼ 7), 869 (J ¼ 8), 274
(J ¼ 9), 66 (J ¼ 10), 11 (J ¼ 11), and 1 (J ¼ 12).
Accordingly, the lowest excitation for each J is computed
by projecting out that many degenerate ground states,
which make the excited state computationally challenging.
For sectors with total spin J > L, which are devoid of
ground states, the lowest excitation can be computed more

straightforwardly without projecting out any states. Upon
computing the lowest excitation gaps for all J ≤ Lþ 1
sectors of the 36-site cluster at a ¼ 1.4, we found that the
smallest one originates from the J ¼ Lþ 1 ¼ 13 sector; in
Fig. 3, we show results for J ¼ 11, 12, and 13. The J ¼ 13
gap obtained by extrapolating to vanishing DMRG dis-
carded weight ϵ is Δð13Þ ¼ 0.14599. The lowest gaps
within all other J sectors remain well above Δð13Þ and
there is no doubt (but also no rigorous proof) that the
smallest gap exceeds the relevant threshold 0.138. In the
Supplemental Material [41], the convergence of the gaps
with ϵ is illustrated in Fig. S8 for all 0 ≤ J ≤ 16.
Conclusions.—We have verified the AKLT conjecture

from 1987 that the hexagonal AKLT model has a spectral
gap above the ground state. This confirms that the original
Hamiltonian with a PEPS ground state is gapped, a
question emphasized, e.g., in the recent collection of open
problems [35]. More generally, the existence of a spectral
gap is an immensely consequential property in any quan-
tum many-body system. First, a spectral gap implies the
exponential decay of ground state correlations (but not vice
versa) [24–28] and is expected to imply other complexity
bounds on the ground state such as the area law for the
entanglement entropy. Second, the existence of a spectral
gap is a crucial assumption in the classification of topo-
logical quantum phases and the many-body adiabatic
theorem [48–53]. We also mention that the existence of
a spectral gap is perturbatively stable [50,54–57]. While
our result confirms the long-standing AKLT conjecture, we
hope that it inspires future work on the spectral gap of this
timeless model. In particular, we believe that it would be
useful to have a purely analytical derivation of a spectral
gap, because the argument here relies on numerical
computations without suitable rigorous error bounds and
because a purely analytical argument will presumably be
accompanied by an improved understanding of the model’s
low-energy excitations.

0.1460

0.1464

0.1468

0 100 1 10−8 2 10−8 3 10−8

J=13 

J=12 

J=11 

FIG. 3. Gaps in the sectors J ¼ 11, 12, and 13 graphed versus
the DMRG discarded weight ϵ. The discarded weight decreases
with increasing number of SU(2) states used, and we used up to
D ¼ 2400 for J ¼ 11, 12, andD ¼ 1200 for J ¼ 13. Line fits are
used for ϵ → 0 extrapolation.
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Let us briefly discuss the wider scope of the approach
we use here. The mathematical physics step is the deriva-
tion of a finite-size criterion in the general spirit of Knabe’s
combinatorial criteria [32] with weights as in Refs. [39,40].
The computational physics step consists of verifying the
finite-size criterion by a high-precision DMRG implemen-
tation. Our approach of numerically verifying a combina-
torial finite-size criterion is in principle applicable to any
frustration-free spin system. Concerning the AKLT models,
for example, the square lattice is a natural next candidate to
consider [31,34,58], as well as SUðnÞ-symmetric variants
[59–61]. The cubic lattice is another interesting case which
also displays novel phase-transition phenomena [62].

We would like to thank Daniel Arovas for useful
discussions. M. L. thanks Bruno Nachtergaele for encour-
agement and advice. A.W. S. was supported by the NSF
under Grant No. DMR-1710170 and by a Simons
Investigator Grant. L. W. was supported by the National
Natural Science Foundation of China, Grants No. NSFC-
11874080 and No. NSFC-11734002.

Note added.—After our preprint appeared, Pomata and Wei
[63] demonstrated the existence of a spectral gap in AKLT
models on various two-dimensional degree-3 lattices
including the hexagonal lattice. Their argument is different,
but it also combines analytics (inspired by [29,34]) with
numerics.
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