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We present a numerical study of ground states of the dilute versions of the Sherrington-Kirkpatrick (SK)
mean-field spin glass. In contrast to so-called “sparse” mean-field spin glasses that have been studied
widely on random networks of finite (average or regular) degree, the networks studied here are randomly
bond diluted to an overall density p, such that the average degree diverges as ∼pN with the system size N.
Ground state energies are obtained with high accuracy for random instances over a wide range of fixed p.
Since this is an NP-hard combinatorial problem, we employ the extremal optimization heuristic to that end.
We find that the exponent describing the finite-size corrections ω varies continuously with p, a somewhat
surprising result, as one would not expect that gradual bond dilution would change the T ¼ 0 universality
class of a statistical model. For p → 1, the familiar result of ωðp ¼ 1Þ ≈ 2

3
for the SK model is obtained.
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The Sherrington-Kirkpatrick (SK) model [1] was
devised as the mean-field limit of finite-dimensional
Ising spin glasses, first introduced by Edwards and
Anderson (EA) [2], to describe the unusual phenomenol-
ogy [3] of disorder in the interaction between classical
dipolar magnets in certain materials. Despite the dramatic
simplification that such a limit entails, i.e., replacing the
lattice with a dense network of bonds between all mutual
pairs of spins, the SK model proved so intricate that it took
several years and a herculean effort by Parisi to reveal its
full structure, referred to as replica symmetry breaking
(RSB) [4–6]. RSB was verified rigorously only 30 years
later [7,8]. Over the years, the importance of these Ising
spin glass models has significantly increased as a most
concise conceptualization of systems with disorder and
frustration and the complex structure and dynamics that
emerges [6,9]. Far beyond its origins in materials science,
the SK model has inspired notions of learning in neural
networks and artificial intelligence [10], actual neurons
[11], facilitated optimization of hard combinatorial prob-
lems in operations research and engineering [6,12–14],
elucidated the nature of energy landscapes [15], and made
connections to biological evolution [16], social dynamics
[17], etc. Ironically, in most of these applications, the
unstructured mean-field version, such as the SK glass, is far
more realistic than the lattice geometry of EA. Moreover,
many of these problems, like optimization and learning,
concern the low-temperature limit, instead of the physically
pertinent phase transition at some finite critical temperature
Tc: As long as Tc > 0, a glassy phase exists at T → 0. In
fact, in mean field there is an entire critical line extending
from Tc to T ¼ 0 [18]. Notably, T ¼ 0 is its own fixed
point [19] in the renormalization group sense [20], with its
own set of scaling relations, yet to be completed [21–25],

connecting domain-wall excitations, ground state energy
fluctuations, and finite-size corrections (FSC).
Extending RSB to glassy systems on sparse networks,

i.e., random graphs [26] of finite average or fixed degree
(Bethe lattices, BL), constituted another major break-
through [27]. More recently, the one-dimensional long-
range model [28] has gained popularity [29–32] for the
ability to interpolate between the SK and the EAmodel (but
on a 1D-ring geometry) based on the range of interactions.
That model has effective upper and lower dimensions, but
all results obtained are numerical.
It is thus surprising that after so many years of studying

mean-field spin glasses in the thermodynamic limit on fully
connected (SK) or on sparse networks (BL), there has
been no consideration given to dense but dilute systems.
(Reference [33], concerning optimal graph bipartitioning, a
problem closely related to spin glasses [34], might pose a
rare exception.) For BL, the average or fixed number c of
other spins that any one spin is randomly bonded with, i.e.,
its “degree,” is held constant for all network sizes N → ∞.
In contrast, it is the average bond density,

p ¼ c
N − 1

; ð1Þ

that is held constant in a dilute system. Clearly, in the
SK model each spin has a bond to every one of the other
spins, i.e., cSK ¼ N − 1 and p ¼ 1, while at some general
0 < p ≤ 1, the degree for each spin diverges as c ∼ pN in
the thermodynamic limitN → ∞. Thus, the dilute SKmodel
presents a true alternative to BL, for which p ∼ 1=N → 0,
likely resulting in an alternative RSB analysis. These
connections are illustrated in Fig. 1. In this Letter, we
provide some tantalizing numerical evidence that such an
analysis might be quite distinct and potentially more fruitful
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in revealing, for instance, the nature of finite-size corrections
that occur when N → ∞, which have remained beyond the
scope of RSB.
Understanding the nature of FSC for N → ∞ is an

essential ingredient in the proper interpretation of numeri-
cal data obtained from thermodynamic systems [35]. To
reach the thermodynamic limit with data derived from,
inevitably, finite-size simulations usually requires a certain
degree of extrapolation [36–43]. Here, we will specifically
focus on FSC to the ensemble average of the ground state
energy density, assuming the form

he0iN ∼ he0i∞ þ A
Nω ; ðN → ∞Þ; ð2Þ

defining the energy density in the thermodynamic limit
he0i∞. In many disordered systems, such as for spin glasses
in the low-temperature limit exhibiting RSB, those FSC are
dogged by (unknown) subextensive transients [21,24], i.e.,
transients that diminish slower than the bulk, ω < 1, which
at times obscure the physical interpretation to a point of
arbitrariness [25]. Even in mean field, exact results for
scaling properties of the glassy phase short of the thermo-
dynamic limit are few [23,44–47]. Finding an accessible
problem as a model to make conceptual inroads on
determining FSC would thus constitute a major advance
for RSB.

Numerical simulations, in fact, have provided numerous
insights into the nature of FSC in Ising spin glass models.
It was found that ground state energies (and entropies)
for mean-field systems of N spins have FSC decaying to
excellent approximation with N−2=3. This was observed
first for BL with bimodal bonds [36,37] and subsequently
[41–43,48] also for the SK model. (BL with Gaussian
bonds exhibit FSC with ω ≈ 0.8 [40,49].) For finite-
dimensional Ising spin glasses (EA), FSC collapse of
domain-wall excitations at T → 0 allowed an accurate
determination of the stiffness exponent θ in dimensions d ¼
3;…; 7 [50]. This exponent is fundamental to many aspects
of the glassy state [3]; for instance, θðdlÞ ¼ 0 defines the
lower critical dimension, which appears close to dl ¼ 2.5
[22,51,52], while its determination for d ≥ 6 allowed a direct
check on mean-field predictions [23]. In particular, FSC
were shown to decay consistently as in Eq. (2), applied to
hypercubic lattices of size N ¼ Ld with ω ¼ 1 − θ=d [24],
suggesting the importance of domain-wall excitations for
FSC [21]. Recently, we have proposed to use FSC analysis to
assess the quality and scalability of optimization heuristics
for hard combinatorial problems [14].
In the present study, we generate N × N symmetric bond

matrices with entries from a dilute bond distribution,

PðJÞ ¼ pδ

�
J2 −

1

pN

�
þ ð1 − pÞδðJÞ; ð3Þ

such as to minimize the SK Hamiltonian [1],

HJ ¼ −
X
i>j

Jijσiσj; ð4Þ

over the set of N Ising spin variables, σi ¼ �1. We thus
approximate the ground state energy density, e0ðN; pÞ ¼
ð1=NÞminσ⃗HJ, for each instance J. Like at p ¼ 1, PðJÞ is
symmetric with variance hJ2i ¼ 1=N but higher moments
for the dilute SK model diverge for p → 0, i.e., hJ2ni ¼
p=ðpNÞn for n ¼ 2; 3;…. For each bond density p
(0 < p ≤ 1), we sample ensemble averages he0iN of the
ground state energies over a range of sizes N, where PðJÞ
in Eq. (3) ensures that the average thermodynamic
ground state energy is universal [8,53], he0i∞ ¼ eParisi ¼
−0.7631667265…, first approximated by Parisi [4]. Here,
we report on the results for a range of values p < 1 and find
surprisingly nontrivial behavior in the continuous depend-
ence of ωðpÞ. As the topology of the diagram in Fig. 1
suggests, RSB should remain in effect for all p, possibly
even in the limit p → 0, where a solution should become
trivial. (Even for the smallest constant p, there is a
neighborhood of the thermodynamic limit, for sizes
1=p ≪ N < ∞, where the dilute system is dense enough
to be above the percolation transition for sparse random
graphs at c ¼ 1, i.e., pc ∼ 1=N [26]; see Fig. 1.)

FIG. 1. Depiction of alternative ways to approach the thermo-
dynamic limit N → ∞ (or 1=N → 0) for mean-field spin glass
models of (average or fixed) spin degree c. Previous work had
been focused on constant c while 1=N → 0 (green down arrows),
referred to as “Bethe lattices” due to their locally treelike
structure [27]. In Refs. [36,37], it was shown that the thermo-
dynamic limit of their ground state energy densities he0iBetheN¼∞ can
be connected (horizontal green arrows) to that of the SK model
(black dot) via he0iBetheN¼∞ ∼ c1=2eParisi, at least for c ≫ 1, i.e., above
the Erdös-Rényi percolation transition for sparse random graphs
[26] (red dot). This study explores a diluted SK system, in which
system size N and connectivity c both evolve such that p ∼ c=N
remains constant (blue rays).

PHYSICAL REVIEW LETTERS 124, 177202 (2020)

177202-2



The following results are obtained with the extremal
optimization (EO) heuristic [54–56]. For a generic com-
binatorial optimization problem, EO performs a local
search [56,57] on an existing configuration of N variables
by changing preferentially those of poor local arrangement.
For example, in the case of the spin glass model in
Eq. (4), it assigns to each spin variable a “fitness” λi ¼
σi
P

N
j¼1 Ji;jσj, corresponding to the negative of the local

energy of each spin, so thatH ¼ − 1
2

P
N
i¼1 λi reproduces the

SK Hamiltonian in Eq. (4). A local search with EO requires
the ranking of these fitnesses λi from worst to best,
λΠð1Þ ≤ λΠð2Þ ≤ � � � ≤ λΠðNÞ, where ΠðkÞ ¼ i is the index

for the kth-ranked variable σi. In the basic version of EO, it
always updates the lowest rank, k ¼ 1 [54,58,59]. Instead,
τ-EO as used here selects the kth-ranked variable with a
scale-free probability Pk ∝ k−τ. The selected variable is
updated unconditionally, and its fitness and that of its
neighboring variables are reevaluated. This update is
repeated as long as desired, where the unconditional update
ensures significant fluctuations, yet, sufficient incentive to
return to near-optimal solutions due to selection against
variables with poor fitness, for the right choice of τ. Clearly,
for finite τ, EO never “freezes” into a single configuration; it
instead records one (or even an extensive set [37,60]) of the

(a) (b) (c)

(d) (e) (f)

(j) (k) (l)

(g) (h) (i)

FIG. 2. Extrapolation for the rescaled ground state energy densities he0iN of the diluted SK model of bond density p at different sizes
N, where each data point is plotted once for 1=N (i.e., ω ¼ 1, open symbols) and a second time for 1=Nω with a value of ω chosen
such that the extrapolation to the thermodynamic limit at the intercept 1=Nω → 0 is asymptotically linear (closed symbols). Each panel
(a)–(l) depicts a different density p, where data are fitted to the asymptotic form in Eq. (2) (drawn as either red or blue dashed lines,
respectively). Each fit obtains the exponent ω and the thermodynamic ground state energy density he0iN¼∞, which should approach the
Parisi energy density, eParisi ¼ he0iN→∞, for all p [53] (horizontal line), listed in Table I.
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best configurations in passing. Our specific implementation
of τ-EO for the SKmodel proceeds is described in Ref. [42].
EO is implemented [61] for denser instances (p ≥ 0.05)

as described in Refs. [41,42], for sparser instances
(p ≤ 0.05) as described in Refs. [36,37]; we have obtained
statistically identical results for both at p ¼ 0.05. For any
given value of p, we generate a large number of instances
over a large range of sizes N (from 105 instances for all
N < 200 to 2 × 103 at N ≈ 1000, to 102–103 for
N > 1000) and average the obtained ground state energies
he0iN plotted as a function of N in Fig. 2(a)–2(l). It is well
known that finding solutions of lowest energy for each
instance corresponds an NP-hard combinatorial problem
(Max-Cut [62]), and a significant effort must be undertaken
to minimize systematic errors in the approximation of
ground states. Luckily, we can gauge the accuracy of EO
(and any other heuristic [14]) using the theoretical
predictions already obtained with RSB. For instance, in
Fig. 2(a), pertaining to the SK model (p ¼ 1) as previously
studied in Ref. [41], the EO data were extrapolated to the
thermodynamic limit and fit according to Eq. (2) to
reproduce the RSB prediction for eParisi to 5 digits of
accuracy. Similarly, EO applied to sparse networks [36,37]
reproduced the RSB prediction for BL of fixed degree
c ¼ 3 from Ref. [27] to 4 digits of accuracy. Further
application of EO to BL of fixed degrees c ¼ 4;…; 26

provided predictions for thermodynamic heðcÞ0 iN¼∞, which
themselves extrapolate consistently for c → ∞ such that

c−1=2heðcÞ0 i∞ ∼ eParisi. Thus, the extrapolation plot, i.e., the
very fact that a scaling according to Eq. (2) can be
consistently applied, becomes a bootstrap measure of
validation in its own right [14].
In Table I we list all parameters obtained from the data

displayed in Fig. 2 for each value of p asymptotically for

large N to Eq. (2). We observe that the dependence of the
FSC exponent ω on p, shown in Fig. 3, is quite remarkable.
While the SK model [41–43,48] as well as sparse networks
[21,36,37] with bimodal bonds have consistently exhibited
FSC withω ≈ 2

3
, independent of degree c, for fixed p < 1 in

the dilute SK model we find significant variation in ωðpÞ.
For decreasing p, ωðpÞ rises from its SK value at p ¼ 1
with what appears to be a continuous hyperbolic form,
roughly ω − 2

3
∼ 1

p, for about two decades, 0.03 ≤ p ≤ 1, as
the inset of Fig. 3 suggests. Leaving he0i∞ as a fitting
paramter, the exact result, he0i∞ ¼ eParisi, is reproduced
within errors for p > 0.03; see Table I. Significant devia-
tions only arise for the smallest values of p studied here,
and it is not obvious whether these are due to systematic
errors in EO or due to the assumptions underlying Eq. (2)
Fixing he0i∞ ¼ eParisi for the fit has virtually no effect on
our key result, the variation of ωðpÞ, as listed in Table I, for
p > 0.03. However, the data for smaller p no longer fit to
any FSC we considered, such as higher order corrections to
Eq. (2), logarithmic corrections, etc., unless we assume
large systematic errors and discount EO data for larger N.
Not only does that contradict aforementioned results in
Refs. [36,37], it renders any such fit arbitrary. It is
interesting that this transition occurs at a value of p where
the fitted value of ωðpÞ just about passes unity, suggesting
that a bulk (1=N) correction, subdominant in Eq. (2) for
ω < 1, might interfere. (At p ¼ 1, such a correction has
been ruled out for the SK model in Ref. [41].) The
breakdown of simple FSC in Eq. (2) is also signaled by
the diverging amplitude AðpÞ in Table I.
An analytic study of the dilute SK model in the limit of

p → 0 should be able to reveal whether the limit for ω is

FIG. 3. Plot of the fitted values for the exponent ω controlling
the FSC in the extrapolation of the ground state energies shown in
Fig. 2 for the bond-diluted SK model as a function of bond
density p. The data for ω can be found in Table I. Inset: Except for
the smallest values of p, the exponent subtracted by its SK value
(ωSK ≈ 2

3
at p ¼ 1), i.e., ω − 2

3
, appears to approach the SK value

roughly hyperbolically, ∼1=p.

TABLE I. List of the fitted values for the average ground state
energies he0iN¼∞, the correction amplitude A, and the FSC
exponent ω of the SK model at various bond densities p, obtained
by fitting the numerical data displayed in Fig. 2 to the asymptotic
form in Eq. (2). That fit was conducted over the specified range of
system sizes N.

p he0i∞ ω A N range

0.005 −0.751ð1Þ 1.39(1) 448(5) 340–2047
0.01 −0.752ð1Þ 1.32(1) 125(5) 165–2047
0.02 −0.755ð1Þ 1.16(1) 26(3) 255–1023
0.03 −0.757ð1Þ 1.02(1) 9(1) 180–512
0.05 −0.761ð1Þ 0.86(1) 3.3(5) 165–512
0.1 −0.762ð1Þ 0.79(1) 1.7(1) 63–1023
0.2 −0.762ð1Þ 0.73(1) 1.04(7) 63–1023
0.3 −0.762ð1Þ 0.71(1) 0.91(5) 63–1023
0.4 −0.762ð1Þ 0.70(1) 0.86(5) 63–1023
0.5 −0.762ð1Þ 0.69(1) 0.80(4) 45–1023
0.6 −0.762ð1Þ 0.68(1) 0.75(3) 45–1023
1.0 −0.763 23ð5Þ 0.666(3) 0.71(1) 80–2047
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regular or singular. A perturbative expansion around that
limit might also shed light on the nature of FSC in RSB,
since there does not appear to be a transition at any finite p
from RSB near p ¼ 1 to a simple replica-symmetric phase,
at least at T ¼ 0. Thus, future studies should explore the
properties of the dilute SK model for finite T. But even at
the ground state level, we intend to explore the behavior of
other characteristic features, such as the ensemble fluctua-
tions in the ground state energies [23,41,44]. As there is
expected to be a scaling relation between the FSC exponent
ω and the exponent describing such fluctuations [21],
investigating their relation while evolving with p should
be very revealing about the nature of universality at T ¼ 0.

I thank the referee for pointing out the divergence of the
higher moments hJ2ni.
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