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The secular dynamics of a nonrelativistic charged particle in an electromagnetic wave can be described
by the ponderomotive potential. Although ponderomotive electron-laser interactions at relativistic
velocities are important for emerging technologies from laser-based particle accelerators to laser-enhanced
electron microscopy, the effects of special relativity on the interaction have only been studied theoretically.
Here, we use a transmission electron microscope to measure the position-dependent phase shift imparted to
a relativistic electron wave function when it traverses a standing laser wave. The kinetic energy of the
electrons is varied between 80 and 300 keV, and the laser standing wave has a continuous-wave intensity of
175 GW=cm2. In contrast to the nonrelativistic case, we demonstrate that the phase shift depends on both
the electron velocity and the wave polarization, confirming the predictions of a quasiclassical theory of the

interaction. Remarkably, if the electron’s speed is greater than 1=
ffiffiffi
2

p
of the speed of light, the phase shift at

the electric field nodes of the wave can exceed that at the antinodes. In this case there exists a polarization
such that the phase shifts at the nodes and antinodes are equal, and the electron does not experience
Kapitza-Dirac diffraction. Our results thus provide new capabilities for coherent electron beam
manipulation.
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The motion of a nonrelativistic charged particle in an
electromagnetic (EM) wave can be described on timescales
longer than the wave period by the ponderomotive potential
[1], an effective potential proportional to the time-averaged
square of the electric field and independent of the EM wave
polarization or particle velocity. The ponderomotive poten-
tial plays an important role in a variety of phenomena
including the Kapitza-Dirac effect [2,3], high-harmonic
generation [4], laser-driven particle acceleration [5], free
electron laser seeding [6], electron pulse train generation
[7,8], and laser-controlled electron interferometry [9–11].
A significant theoretical effort has been dedicated to

generalizing the ponderomotive potential for particles with
relativistic initial velocities [12–17]. In this case, the inter-
action depends on both the particle velocity and EM wave
polarization. While nonrelativistic particles are always
pushed away from the high electric field amplitude regions
of the wave, relativistic particles can be deflected towards
them, in an effect called relativistic reversal [14]. This effect
enables polarization-based control of the coherent manipu-
lation of relativistic electron beams using laser light, with
applications including rapidly switchable electron beam
splitters, Kapitza-Dirac diffraction-free phase shifters, and
ponderomotive free-electron laser wigglers [12,18].
Here, we experimentally study the interaction of a

relativistic electron with a standing laser wave. We first
formulate a quasiclassical theory of the interaction that

allows us to calculate the phase shift imparted to an electron
wave packet as it traverses the laser wave, from which
modifications to the ponderomotive potential can be
derived. Then, using the relativistic electron beam of a
transmission electron microscope (TEM) and the standing
laser wave of a Fabry-Pérot optical cavity, we image the
phase shift imparted to the electron beam and observe
velocity- and polarization-dependent relativistic effects
including relativistic reversal.
To calculate the phase shift imparted to a relativistic

charged particle by an EM wave of arbitrary spatial and
temporal configuration, we use the quasiclassical approxi-
mation, which assumes that the shortest wavelength present
in the EM wave λL is much larger than the electron wave-
length λe. This condition is satisfied in most experimentally
relevant situations. The phase shift is then givenby the action
along the classical trajectory divided by the reduced Planck
constant ℏ. We perform this calculation up to the second
order in the electric field strength, which in the quantum
picture corresponds to stimulated Compton scattering (SCS)
[2,19]. This approximation is valid over a wide range of EM
wave intensities, from an onset where SCS overcomes
spontaneous Compton scattering [2], up to the “relativistic”
wave intensity [20,21] where the particle is accelerated to a
relativistic velocity within a single cycle of the wave.
Since the action is a Lorentz scalar, it is convenient to

perform the calculations in the reference frame comoving
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with the initial (unperturbed) velocity of the electron,
v0 ¼ cβẑ, where the motion remains nonrelativistic at all
times. β is the electron’s speed in units of the speed of light
c. Variables in the comoving frame are denoted by an
apostrophe. The phase shift can then be written as

ϕ ¼ 1

ℏ

Z
dt0

�
1

2
mv02ðt0Þ − eA0½r0ðt0Þ; t0�·v0ðt0Þ

�
; ð1Þ

where m is the electron mass, e is the elementary charge,
and A0½r0ðt0Þ; t0� is the vector potential (in the Coulomb
gauge) evaluated at the electron’s position r0ðt0Þ. We
evaluate this expression perturbatively to the leading
(second) order in the field strength parameter ejA0j=mc.
The first order contribution to the phase shift vanishes due
to energy-momentum conservation. In the comoving frame,
the electron is initially at rest at position r00. The electric
field of the EM wave accelerates it to a velocity v01ðt0Þ
which, to first order in ejA0j=mc, is given by
v01ðt0Þ ¼ eA0ðr00; t0Þ=m. Using this expression in Eq. (1),
the phase can then be expressed (to second order in
ejA0j=mc) in terms of only A0:

ϕ ¼ −
1

ℏ

Z
dt0

e2

2m
A02ðr00; t0Þ: ð2Þ

To express the phase shift in terms of the laboratory frame
Coulomb gauge vector potential, we perform a Lorentz
transformation and then restore the Coulomb gauge by a
gauge transformation (see the Supplemental Material [22]).
The resulting expression is

ϕ ¼ −
1

ℏ

Z
dt

e2

2mγ
ðfA½r0ðtÞ; t� −∇G½r0ðtÞ; t�g2

− β2fAz½r0ðtÞ; t� −∇zG½r0ðtÞ; t�g2Þ; ð3Þ

where r0ðtÞ is the unperturbed electron trajectory in the
laboratory frame, γ ¼ ð1 − β2Þ−1=2, and

Gðx; tÞ ¼ cβ
Z

t

−∞
dTAz½x − cβðt − TÞẑ; T� ð4Þ

is the gauge function, where x ¼ ðx; y; zÞ. Using the
slowly-varying envelope approximation, which assumes
that the amplitude of the EM wave varies slowly along the
electron trajectory relative to its oscillation period, we can
time average the integrand of Eq. (3) over one cycle of the
field, leaving an effective potential. To zeroth order in β,
this potential is simply the ponderomotive potential
UpðxÞ ¼ ðe2=2mÞhA2ðx; tÞi, where the angle brackets
denote a time average over one oscillation period of the
field. We note, however, that Eq. (3) remains valid in
general for the SCS phase shift, even if the electromagnetic
field does not have a slowly varying envelope in time
and space.

When the electron is relativistic, the β-dependent terms
in Eq. (3) cannot be neglected. In particular, the ∇G terms
become relevant if the amplitude of the EM wave varies
substantially over distances comparable to its wavelength,
such as in a standing wave. In the case of a monochromatic
standing wave with its wave vector parallel to the x axis and
polarization specified by angle θ and ellipticity parameter ϵ,
the Coulomb gauge vector potential can be written as

Aðx; tÞ ¼ A0ðy; zÞ cos ð2πx=λLÞ
× ½cosðθÞ cos ðωtÞẑþ sinðθÞ cos ðωt − ϵÞŷ�; ð5Þ

where A0ðy; zÞ is the wave’s amplitude envelope and ω ¼
2πc=λL is its angular frequency. If the slowly varying
envelope approximation is satisfied, time averaging the
integrand of Eq. (3) results in the relativistic effective
potential

UrðxÞ ¼
e2A2

0ðy; zÞ
4mγ

1

2
½1þ ρðθ; βÞ cos ð4πx=λLÞ�; ð6Þ

where

ρðθ; βÞ ¼ 1 − 2β2cos2ðθÞ ð7Þ

describes the relative depth of the standing wave structure
of the potential. An electron beam passing through such an
EM wave will acquire a spatial phase modulation

ϕðx; yÞ ¼ −ϕ0ðyÞ
1

2
½1þ ρðθ; βÞ cos ð4πx=λLÞ�; ð8Þ

ϕ0ðyÞ≡ 1

ℏ

Z
dz

e2A2
0ðy; zÞ

4mcβγ
; ð9Þ

where ϕ0ð0Þρðθ; βÞ is the depth of the phase modulation
along the wave axis.
Equations (6) and (7) show that the relativistic inter-

action is strongly dependent on both the electron speed β
and EM wave polarization angle θ, though not on the
ellipticity parameter ϵ. Importantly, if β ≥ 1=

ffiffiffi
2

p
, there

exists a polarization angle θr, referred to as the relativistic
reversal angle [14], such that ρðθr; βÞ ¼ 0. At this angle,
the standing wave structure of the phase shift disappears
entirely, and therefore no Kapitza-Dirac diffraction occurs.
The relativistic interaction also modifies the laser-

induced group delay of the electron wave function. The
group delay, equivalent to the retardation of a classical
particle and defined as τ ¼ ℏðdϕ=dKÞ, can be calculated
from the energy dependence of the electron phase shift:

τðx; yÞ ¼ ℏ
mc2

ϕ0ðyÞ
β2γ

1

2
½1þ ϱðθ; βÞ cos ð4πx=λLÞ�; ð10Þ

ϱðθ; βÞ≡ 1þ 2β2ð1 − 2β2Þcos2ðθÞ: ð11Þ
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In particular, at θ ¼ θr, when the standing-wave structure
in the potential of Eq. (6) vanishes, the standing wave
structure is still present in the spatial profile of the group
delay. Furthermore, when 0 < β < 1=

ffiffiffi
2

p
, the group delay

is negative for portions of the standing wave around the
electric field nodes. This negative group delay corresponds
to an attractive potential, in contrast to the nonrelativistic
ponderomotive potential which is always repulsive.
A schematic of the experiment is shown in Fig. 1(a). The

electron beam of a TEM (Thermo Fisher Scientific Titan)
passes through a standing laser wave, where the axis of the
standing wave x̂ is perpendicular to the propagation
direction of the electron beam ẑ. The interaction imprints
a spatial phase modulation on the electron wave function,
as described by Eq. (8). The electron beam then propagates
away from the interaction region before it is imaged using a
direct electron detection camera (Gatan K2) [24]. The
electron beam is brought to a focus before it crosses the
standing laser wave such that a point-projection image,
known as a “Ronchigram”, is formed on the camera
[25,26]. As illustrated in Fig. 1(b), paraxial propagation
of the electron beam from the interaction region to the
camera partially converts the phase modulation of the
electron wave function to amplitude modulation, allowing
the phase modulation to be imaged. The electron’s kinetic
energy K ¼ ðγ − 1Þmc2 can be adjusted between 80 keV
and 300 keV by changing the TEM’s accelerating
voltage.
The standing laser wave is formed inside of a Fabry-

Pérot optical cavity which serves to amplify and focus a
continuous-wave laser beam with a wavelength of λL ¼
1064 nm [9–11]. The fundamental mode of the cavity has a
Gaussian profile such that at its waist where it intersects the
electron beam, Eq. (9) gives

ϕ0ðyÞ ¼ e
−2y

2

w2
0

ffiffiffiffiffi
8

π3

r
α

βγ

Pλ2L
mc3w0

; ð12Þ

where w0 is the 1=e2 radius of the mode, α is the fine-
structure constant, and P is the optical power circulating in
the cavity. Since a relativistic electron spends little time
interacting with the EM wave, the laser intensity must be
high in order for the electron wave function to accumulate
appreciable phase. We achieve phase shifts on the order of
1 rad with a circulating power of 44 kW focused to a
w0 ¼ 8 μm focus, corresponding to a peak standing wave
intensity of 175 GW=cm2. To our knowledge, this is the
highest continuous-wave laser intensity ever achieved.
A half-wave plate placed at the input of the optical cavity

is used to control the linear polarization angle of the light
entering the cavity. A portion of the light transmitted
through the cavity is sent to a polarimeter that measures
the optical power in the two orthogonal polarization
components relative to the polarimeter axis. The polarim-
eter employs polarizing beam splitter cubes to separate the
orthogonal polarization components, and calibrated photo-
diodes to measure the optical power of each component
(see the Supplemental Material [22]). The absolute value
and sign of the polarization angle θ are determined from the
polarimeter reading and orientation of the half-wave plate,
respectively. The polarization at the polarimeter is assumed
to be the same as that inside the cavity, as the cavity was
measured to not appreciably change the polarization
between its input and output (see the Supplemental
Material [22]).
Ronchigrams were collected at electron beam energies of

K ¼ 80, 150, 215, 230, 245, 260, 275, 290, and 300 keV.
At each electron energy the rotation angle of the half-wave
plate was incremented between 10 s electron camera
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FIG. 1. (a) Schematic. An electron beam intersects a standing laser wave (electric field shown in magenta, magnetic field shown in
cyan) formed between the two mirrors (blue cylinders) of a Fabry-Pérot optical cavity. The dimensions of the cavity are not shown to
scale. The polarization axis of the standing wave (magenta arrows) makes an angle θ with the electron beam axis. The polarimeter is
tilted by an angle ξ relative to the electron beam axis. (b) Phase modulation detection scheme. The electron beam crosses the standing
laser wave after passing through a focus. The interaction with the standing wave imprints a spatial phase modulation on the electron
beam which is converted to intensity modulation as the electron beam propagates to the image plane. (c) Ronchigram of the standing
laser wave. The direct electron detection camera records the number of electrons landing on each of its pixels. In the image plane, the
standing wave structure of the phase modulation manifests as a series of bright and dark fringes.
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exposures. The half-wave plate was rotated through 90° in
one direction and then rotated back to the original position,
thereby rotating the polarization angle from θ ≈ −90° to
θ ≈þ90° and back again. Rotation of the polarization angle
through a full 180° allowed for the determination of any
misalignment between the polarimeter axis and the electron
beam axis [angle ξ shown in Fig. 1(a)].
Figure 1(c) shows a typical unprocessed Ronchigram.

Both the standing wave structure and the transverse
Gaussian profile of the cavity mode are clearly evident.
Each Ronchigram was fit in Fourier space using the phase
modulation depth of the standing wave as a fit parameter
(see the Supplemental Material [22]). To correct for small
variations in the laser wave parameters during the experi-
ment, the phase modulation depth was normalized by the
optical power at the polarimeter (proportional to the
circulating power P) and the mode waist w0, which were
both measured at the time the Ronchigram was taken. The
mode waist was determined from a measurement of the
cavity’s transverse mode frequency spacing (see the
Supplemental Material [22]). The fractional change in λL
during a typical experiment was measured to be small
enough (∼10−6) that it was assumed to be constant for the
purpose of normalization.
Each set of normalized modulation depth versus polari-

zation angle data was fit to Eq. (7), with an angle-
independent normalization constant, a polarization angle
axis offset, and the electron speed β as fit parameters. The
electron speed was used as a fit parameter because the
nominal electron energies K are only accurate to approx-
imately �1% (per the TEM manufacturer’s specifications).
The polarization angle axis offset accounts for the polar-
imeter misalignment angle ξ, as well as any linear polari-
zation rotation induced by optics between the cavity output
and polarimeter (see the Supplemental Material [22]).

This data is presented in Fig. 2(a); for clarity, only the
K ¼ 80, 150, 215, and 300 keV data sets are shown. The
remaining data sets are shown in the Supplemental Material
[22]. The relative phase modulation depth exhibits a
dependence on the polarization angle θ that is well modeled
by Eq. (7); the root-mean-squared difference between the
fit and data across all data sets is 7.1 × 10−3. To show the
relative phase modulation depth’s β dependence, the fit
values at θ ¼ 0 are plotted as a function of the nominal
values of β2 for all data sets in Fig. 2(b), where they are
compared with the linear dependence expected from
Eq. (7). Again, there is a good correspondence between
the measured values and theoretical model.
Imaging of the spatial phase modulation profile allows

the relativistic reversal effect to be directly observed in the
Ronchigrams. As the polarization angle is rotated through
the relativistic reversal angle, the standing wave structure in
the Ronchigram diminishes in amplitude until it disappears
entirely and then re-emerges with the opposite sign. This is
demonstrated in Fig. 2(c), using Ronchigrams from the
K ¼ 300 keV data set shown in Fig. 2(a). A temporally
linear drift in the fringe position of 0.4 nm=s due to thermal
expansion of the cavity support structure has been removed
from the displayed data (see the Supplemental Material
[22]). The change in fringe position around θr was used to
infer the sign of the relative phase modulation depth for the
K ≥ 215 keV data sets in Figs. 2(a) and 2(b).
Our results show that SCS of relativistic particles

exhibits a strong dependence on the electron velocity
and the EM wave polarization, and that this dependence
is well described by a quasiclassical theory of the inter-
action. The most striking feature of the polarization
dependence is that the standing wave structure of the
phase shift reverses its sign at a particular polarization
angle when β ≥ 1=

ffiffiffi
2

p
. Therefore, this experiment can also
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FIG. 2. (a) Relative phase modulation depth as a function of polarization angle. Measurements of the relative phase modulation depth
(dots) are plotted along with fitted theory curves (lines) as a function of the laser wave polarization angle θ for several values of the
nominal electron energy K (equivalently, electron speed β). The fitted theory (solid lines) is described by Eq. (7). (b) Relative phase
modulation depth as a function of electron speed. Fit values for the relative phase modulation depth at θ ¼ 0 are shown as a function of
β2 for each of the nine electron energies examined (black dots). The theoretical dependence on β2 predicted by Eq. (7) is shown in red.
(c) Relativistic reversal. Ronchigram standing wave fringes are shown as a function of polarization angle θ and position along the laser
beam axis x for the K ¼ 300 keV data set used in panel (a). The bright (red) and dark (blue) fringes reverse positions around the
relativistic reversal angle θr (horizontal black line). The vertical lines are a guide to the eye.
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be understood as an observation of the relativistic reversal
of the amplitude of Kapitza-Dirac diffraction [2,3].
The dependence of the relativistic effective potential on

the polarization of the EM wave provides an avenue for
dynamical optical control of relativistic electron beams.
When the standing wave structure of the phase modulation
is eliminated, the electron wave function does not diffract
from the EM wave. Therefore, varying the polarization of
the standing wave could be used to make a rapidly
switchable electron beam splitter, or implement electron
pulse slicing [27]. The same effect could be used to
temporally phase modulate an electron beam focused
through a single antinode of the standing wave.
Additionally, when the standing EM wave is used as a
phase plate for phase contrast electron microscopy, oper-
ation at the relativistic reversal angle eliminates the
presence of “ghost” images due to diffraction (see the
Supplemental Material [22]) [10,11]. Polarization-based
control of the relativistic effective potential thus adds a
much-needed capability to the presently sparse toolkit for
coherent electron beam manipulation.
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