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Cutting a brittle thin sheet with a blunt object leaves an oscillating crack that seemingly violates the
principle of local symmetry for fracture. We experimentally find that at a critical value of a well chosen
control parameter the straight propagation is unstable and leads to an oscillatory pattern whose amplitude
and wavelength grow by increasing the control parameter. We propose a simple model that unifies this
instability with a related problem, namely that of a perforated sheet, where through a similar bifurcation a
series of radial cracks spontaneously spiral around each other. We argue that both patterns originate from
the same instability.
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A problem under active development in fracture theory
concerns the prediction of the crack path and the associated
instabilities: when a piece of material breaks, what deter-
mines the shape of the resulting pieces? In this respect, an
oscillatory instability occurring in quasistatic propagation
of cracks in thermally quenched strips of glass [1] has
played an important role in the development of theories for
unstable fracture path. Such a simple and clear situation has
indeed stimulated a number of studies over the past years
[2–5]. Similar instabilities have been observed in oscil-
latory cracks in stretched rubber [6], drying colloidal films
[7], and in the failure of coatings [8], also triggering
theoretical developments [9]. In this Letter we analyze
two seemingly different crack paths in brittle thin elastic
sheets (an oscillatory and a spiral path), and show that they
both result from the same instability, by identifying the
common control parameter.
When a thin elastic film, clamped along its edges, is cut

by a blunt tool displaced parallel to the sheet [configuration
S, for Straight, in Fig. 1(a)], the expected straight cut is not
observed [10–12], but instead an oscillatory path develops
along the tool trajectory, breaking the left-right symmetry
[Fig. 1(c)]. In a different situation (configuration C, for
Conical), when a conical tool perforates a brittle sheet
[Fig. 1(d)], N cracks may propagate with a radial straight
trajectory when N ≥ 4. But when N ≤ 3, intertwined
spiraling trajectories [13] are observed. Both experiments
suggest that the straight path is unstable despite the
symmetry of both systems. Previous works focused on
the developed patterns, with both geometries correctly
captured by a simplified theory for tearing [12–14], but
fail in explaining why the straight path is not observed. In
this Letter we derive a general framework that captures this
feature, and compare its predictions with an experimental
setup dedicated to study the instability.

We start by reporting a disregarded experimental fact in
previous experiments with configuration S [Fig. 1(a)].
A rectangular sheet (bioriented polypropylene, thickness
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FIG. 1. (a)–(c) Configuration S and oscillatory crack instability.
(a) Setup: a rigid tool of width w with rectangular section is
driven along a clamped sheet (width W ≫ w); (b) upper view:
convex hull H of the cut and the lower edge of the sheet (white
region), and material that is stretched due to the pushing tool
(clear grey region); (c) scanned crack path for w ¼ 15 mm, W ¼
155 mm with a long, straight path before oscillatory instability
appears at ψ ≈ 60°. (d)–(h) Configuration C and spiral crack
instability: (d) a rigid cone is driven across a clamped sheet with
N ¼ 4 initial radial cuts; (e),(f) ongoing perforations with N ¼ 4
(e) and N ¼ 3 (f); (g),(h) corresponding scanned crack paths:
stable (g) radial path for N ¼ 4 and unstable (h) radial path for
N ¼ 3 leads to three intertwined spiral paths.
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t ¼ 30 μm, length 900 mm and width W ¼ 148 mm) is
clamped along its two long edges and prepared with a
centered notch (5 to 10 mm long) on its lower (short) edge.
A centered tool with rectangular section of width w ¼
15 mm (the only relevant dimension), is displaced at a
constant speed v ¼ 20 mm=s, starting from the lower edge
and along the midline of the sheet. Attention was pre-
viously focused on characterizing the periodic oscillatory
regime [10,12,14]. We observe however that in a relatively
wide sheet, propagation is first straight, and only becomes
oscillatory beyond a certain distance from the lower edge
[Fig. 1(b)]. Straight path at the beginning is insensitive to
changes in the width, w, of the tool. In this initial regime,
the straight path is stable, as evidenced by perturbations
relaxing towards the center (this is different from the
observation that the instability is suppressed for sufficiently
inclined tools [11]). A natural question now arises: under
which circumstances is the symmetric (straight) path
unstable?
A key concept in tearing [13–15] is the convex hull of the

cuts in the sheet because it represents the portion of the
sheet that can bend away without generating in-plane
stresses. For very thin sheets (with negligible bending
stiffness), stresses and fracture propagation may therefore
only occur when a tool gets past the boundary of the convex
hull. At the early stages of the experiment in configuration
S, the convex hull H is the white triangular region in
Fig. 1(b), characterized by an angle ψ at its base. During the
experiment, ψ increases continuously as the tool moves
forward, up to when the instability develops roughly for
ψ ≈ 60° [Fig. 1(c)]. We will show that ψ plays the role of a
control parameter that locally determines the stability of the
straight crack.
We devised a variation of the experiment [configuration

S0, Fig. 2(a)] in which we impose a fixed value of ψ , and
study the transition from straight to oscillatory propagation,
as this control parameter is varied at will. This is achieved
by adding a pair of sharp blades on both sides of the sheet,
at 2.5 mm from the clamps (separation between blades,
150 mm). The blades move rigidly, together with the tool,
keeping angle ψ constant at all times. Experiments show
that by increasing ψ , the initially straight path [Fig. 2(b)]
becomes oscillatory [Fig. 2(d)] at a critical angle ψ ≈ 56°
[Fig. 2(c)]. We measure the wavelength λ and the amplitude
A of oscillations.
Fracture trajectory can be determined by minimizing at

each time the sum of the elastic and fracture energy [16]. If
bending energy can be neglected, the elastic membrane
energy U is a function of penetration of the tool outside of
the convex hullH, which can be defined in terms of the two
penetration angles αl and αr (here :l;:r refer to left and right,
respectively) and corresponding lengths between the push-
ing point and the crack, l and r [see close-up in Fig. 2(e)].
In previous works [13–15,17] it was assumed that the tool
crossed the convex hull boundary only on one side of the

tool [say, the left side as in Fig. 4(a)]. Dimensional analysis
then leads to an elastic stretching energy equivalent to

Uðl; αlÞ ¼ aEtl2tannαl; ð1Þ

where Et is the two-dimensional stretching modulus (see
the Supplemental Material [18] for details). We note that
the values of n ¼ 5 and 4 introduced previously [14,17] do
not change qualitatively the physics, and use here ðn ¼
3.5; a ¼ 0.0038Þ as determined in previous experiments
[19]. As the energy U only depends on the position of the
crack, the energy release rate (ERR) integrated over the
thickness in a direction u is GðuÞ ¼ ½F · u�þ, where
F ¼ −∇U, and we have noted ½:�þ, the positive part, as
½x�þ ¼ x when x ≥ 0 and ½x�þ ¼ 0 otherwise. Propagation
occurs when G ¼ γt (Griffith’s criterion), in the direction
that maximizes G, hence along vector F, with max
G ¼ kFk, which is equivalent to minimization of the total
energy [16]. The crack trajectory may therefore be deter-
mined using these geometrical rules and oscillatory tra-
jectories are well reproduced [12]. When γ=E ≪ l
(γ=E ¼ 4 μm for the brittle material used in our experi-
ments), fracture occurs [19] for a small penetration angle

αl ≈
�

γ

anEl

� 1
n−1
: ð2Þ

However, this simplified model cannot capture the
instability threshold because straight propagation involves
simultaneous penetration on both sides of the crack.
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FIG. 2. Configuration S0: modified setup for fixed ψ experi-
ments. (a) Two lateral blades cut the sheet at the same speed as the
tool. (b)–(d) Scanned experimental paths for different values of ψ :
(b) ψ ¼ 45°—straight path, (c) ψ ¼ 56°, close to the transition—
small humps, (d) ψ ¼ 66°—oscillating with measured amplitude
(A) and wavelength (λ). Scale is the same on the three cases for
comparison. (e) Geometrical parameters of the theoretical model
(u is the propagation direction).
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We extend the model to such cases by making the simplistic
assumption that the ERR is given by the sum of the
independent ERRs of each side of the crack, namely

GðuÞ ¼ ½Fl · u�þ þ ½Fr · u�þ; ð3Þ

where ðFl;FrÞ are the gradients of the left and right elastic
energies, according to (1). The crack may be driven only by
the left side when Fr · u ≤ 0, only by the right side when
Fl · u ≤ 0, or by both sides. We assume that propagation
occurs in the direction that maximizes G, when Griffith’s
criterion is attained.
We numerically solve our enriched model for configu-

ration S, and recover a straight path becoming later
oscillatory [as in Fig. 1(c)]. For the modified configuration
S0, and despite the simplicity of our assumptions the model
predicts the existence of a critical value ψS

2 ≈ 66.55° for the
onset of oscillations from an initially centered, straight,

longitudinal crack [Fig. 3(a)]. The transition from straight
to oscillatory is subcritical though, as evidenced in the
numerics by starting from a developed oscillatory pattern
with ψ > ψS

2 , and iteratively decreasing ψ while taking at
each iteration the developed pattern of the previous
iteration as initial condition. This procedure leads to a
subcritical threshold ψS

1 ≈ 56.61° below which the oscil-
lations vanish, leading to a straight path. The resulting
amplitude and wavelength of the oscillatory pattern are in
reasonable agreement with experiments [Fig. 3(a)], without
adjusting parameters (we used the same parameters as in an
independent experiment [19]). To illustrate the bistability,
we consider a particular initial condition, namely a short
longitudinal crack, off-centred by a distance δ. We find a
marginal curve δcðψÞ [green curve in Fig. 3(a)], with
ψS
1 < ψ < ψS

2 , such that the crack starts oscillating if
δ > δcðψÞ, whereas if δ < δcðψÞ it ends up propagating
straight along the midline. The existence of a bistability
region was not directly evidenced in experiments, but large
fluctuations [see error bars in Fig. 3(a)] were observed close
to the threshold. Observing straight propagation beyond
ψS
1 , for example for ψ ¼ 60° would require a precision

better than 0.7 mm in the initial cut, which is below our
experimental error.
In the case of the spiraling instability, we define the

control parameter in terms of our initial radial geometry
with N cuts as ψ ¼ π=N [Fig. 1(e)]. We can however only
access discrete experimental values of ψ , because of 2π-
rotational periodicity of the plane. Experiments [13] report
stable straight paths for N ≥ 4, which corresponds to ψ ≤
45° whereas radial patterns are unstable for N ≤ 3, or
ψ ≥ 60°, suggesting a spiraling instability threshold
between 45° and 60°. In contrast with experiments, the
numerics allow us to artificially impose a rotational
symmetry which is not commensurate with 2π, and there-
fore explore arbitrary values of ψ . In practice we follow the
evolution of a crack interacting with two copy versions of
itself rotated by 2ψ and −2ψ [see Fig. 3(b), inset]. These
slave “copy cracks” are used in the computation of the
convex hull to determine the evolution of the center crack.
Note that spiral propagation occurs as the tool radius
increases continuously, and that the fracture process
depends on the system size [for example, in Eq. (2) the
penetration angle depends on the size l]. As we wish to
compare with the oscillatory case, where the tool has a
fixed width w, we maintain in the numerics the spiral to a
size comparable to w by artificially rescaling it at each step.
Starting from a set of radial cracks we numerically solve

the crack path. We find a critical value ψC
2 ¼ 65.1° above

which a radial path does not exist and leads to a logarithmic
spiral path, whose radius increases as expðσθÞ (θ is the
angle polar coordinate, and σ is the pitch). In this
configuration the inverse pitch of the spiral may play the
role of an order parameter, since σ−1 ¼ 0 in the radial case
and is nonzero for the spiral path. The radial to spiral
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FIG. 3. Bifurcation diagrams for the S0 and C configurations.
(a) Normalized amplitude A=w of the oscillatory crack (black
circles). Plotted values correspond to the median over many runs
while the error bars indicate the range of measured values
(ψ ¼ 90° corresponds to configuration S[10,12]). Green line:
threshold of stability for an off-centered initial crack (see text).
Inset: mean values of wavelength λ. Error bars correspond to the
standard deviation. (b) Inverse of the pitch of spiral (red line) as a
function of ψ , as defined in Fig. 1(a). Theoretical prediction for
the pitch according to [13] (continuous line) using a penetration
angle given by Eq. (2) with l ≈ w=ð2 cosψÞ, and in the limit of
vanishing elasticity (α ¼ 0, broken line). N ¼ 2 and N ¼ 3
correspond to experimental values (black circles) taken from
[13]. The N ¼ 4 spiral is not observable experimentally. Inset:
simulated spiral crack (master crack in red, slave cracks in black,
pushing cone in grey) with 140°-rotational symmetry (non-
commensurate with 2π), corresponding to ψ ¼ 70°.
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bifurcation is also subcritical as can be shown through a
continuation method where the pitch of a given spiral is
progressively increased (by decreasing ψ). We obtain a
critical value ψC

1 ¼ 55.65° below which no spirals are
observed [Fig. 3(b)] for the same parameters as in [19].
The subcritical nature of the transition can be highlighted
by taking as initial condition a developed logarithmic spiral
of given pitch σ0 in the range ψC

1 < ψ < ψC
2. There exists a

critical pitch σcðψÞ [green line in Fig. 3(b)] such that for
any σ0 > σcðψÞ the radial propagation is recovered while
for σ0 < σcðψÞ a spiral develops. Experimental pitch agree
well with the numerics for ψ ¼ π=N, where N is the
number of arms, with N ¼ 2, 3 the only possible cases, as
predicted (N ¼ 4 was however observed [17] in a ductile
material).
In configurations S0 and C, the values of α at the critical

ψ are not exactly equal, due to geometric differences. We
note however that ψC

1 ≈ ψS
1 and ψC

2 ≈ ψS
2 , confirming that

oscillatory and spiral paths originate from the same
subcritical instability, and that angle ψ is the single,
relevant control parameter for both cases.
Theoretical estimate for ψ2 (above which a straight

solution cannot be observed).—Consider an initially
straight, centered crack in a perfectly symmetric situation
(αl ¼ αr ≐ α). In Fig. 5 is plotted the ERR as a function of
putative fracture orientation (see the Supplemental Material
[18] for analytical expressions). We observe that GðuÞ
generally bears three lobes and three corresponding local
maxima (see Fig. 5). The two lateral lobes correspond to
propagation only driven by one side (maxima given byG ¼
kFlk or kFrk), and the central lobe to the case when both
sides are active. The critical value ψ2 corresponds to a
propagation equally favourable along the three maximal
directions of the ERR. This occurs for kFlk ¼ kFrk ¼
kFl þ Frk, which is only possible if Fl and Fr form
an angle of 120°. The Griffith criterion requires simulta-
neously G ¼ γt. A calculation valid in the limit of
small critical penetration angle α ≪ 1 gives (see the
Supplemental Material [18]) at first order

ψ2 ≈
π

3
þ n − 2

n
α: ð4Þ

When ψ ¼ π=3, an estimate for α ∼ ðγ=anEwÞ1=ðn−1Þ ∼ 0.2,
which is not a very small number. Equation (4) can
therefore only provide a rough estimate, ψ2 ∼ 65°, which
is however close to our numerical findings (within 2°).
Theoretical estimate for ψ1 (above which stationary

nonstraight solutions exist).—We note that both stationary
oscillating and spiraling paths always include a part where
the crack tip is “geometrically hidden”. By that we mean
that one of the penetration angles is zero because the
penetration zone is disconnected from the fracture tip as in
Fig. 4(a). In such case an incremental crack propagation
cannot release energy on the right side, consistently with

Fr ¼ 0 when αr ¼ 0, and the crack is only driven by the
left side.
In configuration S0, the oscillating crack is always

hidden when it passes the centerline [as in Fig. 4(a)].
A rough estimate of the subcritical threshold value ψ1 is
obtained when the penetration zone has its outer boundary
tangent to the crack path at the crack tip, as sketched
in Fig. 4(b) (see also the Supplemental Material [18]). We
find that

ψ1 ≈
π

4
þ n − 1

n
α: ð5Þ

With α ≈ 0.24, ψ1 ≈ 55° lies within 2° of numerical values.
An identical geometrical construction is obtained for
ψ1 in configuration C, by enforcing that developed spirals
always have their crack tips hidden (see the Supplemental
Material [18]).
In conclusion, we have unified two very different

phenomena observed when fracture of a thin sheet is
caused by a blunt object. The oscillatory and spiraling
paths both result from the same instability, where the
control parameter ψ is a single angle capturing the complex
geometry of the cuts and the blunt tool. We were able to
impose ψ in a dedicated setup, and also studied theoreti-
cally this subcritical instability.

(b)(a) θ
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α + π/2 − l

l

FIG. 4. Hiding mechanism for oscillatory instability. (a) Right
pushing point of the tool is hidden from the crack tip: αr ¼ 0;
(b) critical condition of hiding for an initially centered crack:
π=2 − ψ þ αl ¼ θ.
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FIG. 5. ERR curves for an initially centered crack. (a) Three-
lobed ERR curve for ψ ¼ 55° (below threshold). Local maxima
are marked with black dots, according to the global maximum
energy release rate criterion, in units of γt. Continuous arrow
indicates preferred propagation direction based on the global.
(b) Same as (a) but with ψ ¼ 75° (above threshold).
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Our results bring some interesting consequences for the
cutting of thin films. Since the instability mechanism
involves bending of the sheet, which may not occur on
lengths comparable to its thickness, an efficient way to
impose the cutting path is to use a very sharp blade, with a
cutting edge [20] thinner than the sheet [15]. This can
become a challenge with ultrathin sheets, as happens with
the tearing and perforation of graphene with an atomic
force microscopy tip [21,22]. Based on our findings,
cutting even with a blunt tool will lead to sharp straight
cuts on a distance l if the sheet is held along its edges
separated by a width larger than 2l= tanψ1 (the instability
is neutralized for ψ < ψ1). We suggest for example that
measuring the cutting force along such a regular cut could
provide the fracture toughness of ultrathin films, a quantity
difficult to obtain from standard metrological methods [22].
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