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Nematic-Orbit Coupling and Nematic Density Waves in Spin-1 Condensates
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We propose the creation of artificial nematic-orbit coupling in spin-1 Bose-Einstein condensates, in
analogy with spin-orbit coupling. Using a suitably designed microwave chip, the quadratic Zeeman shift,
normally uniform in space, can be made to be spatiotemporally varying, leading to a coupling between
spatial and nematic degrees of freedom. A phase diagram is explored where three quantum phases with the
nematic order emerge: easy axis, easy plane with single-well structure, and easy plane with double-well
structure in momentum space. By including spin-dependent and spin-independent interactions, we also
obtain the low energy excitation spectra in these three phases. Last, we show that the nematic-orbit
coupling leads to a periodic nematic density modulation in relation to the period A7 of the cosinusoidal
quadratic Zeeman term. Our results point to the rich possibilities for manipulation of tensorial degrees of
freedom in ultracold gases without requiring Raman lasers, and therefore, obviating light-scattering

induced heating.
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Ultracold atoms are a unique platform for exploring
multifaceted quantum magnetic behavior associated with
spin. Some of the success stories in this arena include
spinor Bose-Einstein condensates (BECs) [1], where mag-
netic interactions play an important role, as well as systems
with artificial spin-orbit coupling [2—-13], where indepen-
dent-particle effects are primarily involved. Yet a compre-
hensive experimental framework linking these two
disparate regimes of spin physics in ultracold gases has
been lacking. In part, this is due to the fact that some of the
richest behavior in spinor gases involves the dynamics of
spin-nematic phases [14-26]. These phases are special
because they have a vanishing total magnetization vector
(F) = 0 and their order parameter is tensorial. For a spin-1
system, the expectation value of the spin-quadrupole tensor
operator Qij = %(Fiﬁ‘j + f'jf‘i) may act as an order param-
eter, where i, j are the {x,y,z} components of the spin
operator F[27]. Through interactions between atoms, such
tensor objects naturally generate spin entanglement and
strong correlations. An important example of this is the
reaction between two |F = 1, m = 0) alkali atoms through
s-wave scattering, that is |1,0) + |1,0) < [1,1) + |1, -1),
which conserves m; + m, = 0 of atoms 1 and 2 [28-33].
By contrast, the spin-orbit coupling achieved using
Raman laser schemes does not readily lend itself to the
study of pure spin-nematic objects, although a variety of
other interacting many-body phases have been predicted
[34-39].

In contrast to spin-orbit coupling, in this work we
explore nematic-orbit coupling, where the linear momen-
tum of spin-1 bosonic atoms is coupled to the spin-nematic
degrees of freedom. Nematic spinor states have a zero
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expectation value for the spin vector (F) and nonzero
quadrupole tensor (Qij> = 6;; — d;d;, where d is the
director. Easy-axis or easy-plane states correspond to d
aligned with either the z direction or lying in the xy plane,
respectively. Here, we propose an experimental setup to
create nematic-orbit coupling between the center of mass of
spin-1 bosons and the zz component of the spin-quad-
rupolar operator sz = 2, as shown in Fig. 1.

In the setup shown in Fig. 1, a spatiotemporally varying
quadratic Zeeman shift ¢(r, r)¥? is created using a combi-
nation of a static bias field and a microwave field that is
produced by a monolithic microwave integrated circuit
[41]. After eliminating constant and linear terms in Fz (see
[40]), the effective independent-particle Hamiltonian is

o = [ aeS i) [ B+ Ve + 02 (0,
m

where /), (r) is the creation operator of bosons at position r
with spin components a = {£1,0}, p?/2m is the kinetic
energy, V(r) = Vi,,(z) is the trap potential, g(r,7) =
q + 2Q.(z) cos(krx — wt) is the resulting spatiotemporal
modulation of the quadratic Zeeman shift with period
Ar = 2 /ky, and 1 is the identity matrix. The modulation
amplitude Q.(z) = Qg + Q,z defines the strength of the
nematic-orbit coupling. Since Q. (z) varies linearly with the
z coordinate, it couples two discrete energy levels €y, €,
with different parity, which are defined by the spin-
independent trapping potential V(r). A resonance condi-
tion for the magnetic traveling wave can be achieved when
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FIG. 1. Protocol for nematic-orbit coupling. (a) Optically

trapped Bose-Einstein condensate at a height # above the centroid
of a coplanar waveguide array. The array is part of a monolithic
microwave integrated circuit that modulates the quadratic
Zeeman shift ¢(r, 7) through the ac Zeeman effect. Two inter-
leaved sets of wires (yellow and blue) are energized with
microwave currents whose amplitude is modulated in proportion
to coswt and sinwt, respectively. The result is a magnetic
traveling wave creating a quadratic shift that varies nearly
cosinusoidally as g + Q.(z) cos (k;x — wt). w is near resonance
with the confinement along z, as discussed in [40]. The spacing
of each wire array is d =2 um, a static field is Bj = 1.4 G
and a microwave field amplitude of B; = 0.1 G results from a
current density amplitude per wire of 8.4 x 10* A/cm?. The
microwave frequency is detuned by A = +2 MHz from the clock
transition |F = 1,mp = 0) —» |F = 2,m; = 0) at 1.77 GHz for
PNa. (b) Plot of ¢g(x,z=h,t=0) at h=25pum with
g = —600 Hz, Q.(h) = 1840 Hz, and k; = 27/(2 ym).

w = w, = (e, —€;)/h [40]. Given the discrete nature of
the spectrum along z, we write the field operators as
Valt) = 3, (2 Wna(x.y), Where @,(z) is the cigen-
function of trap state n = {1, 2}. Within the rotating wave
approximation and zero detuning @ — @, =0, the
Hamiltonian can then be rewritten in momentum space
as (see [40]):

Hyp = Z&’LnHDfi’kLn + [Q$£,,1F§$k+,2 +Hel  (2)

k n

Here, ¢y, = [hn1 (K1), ro(k1), ¢, 7(k1)] is the spinor
creation operator with subscript 1 as a shorthand for —1,
k), = (ko k), Hp = e, 1 + gF2, where ¢ = #1243 /(2m)
is the kinetic energy with &k, =|k,|, and k, =
k|, + (k;/2)X are shifted momenta. The Hermitian
conjugate (H.c.) term is Qg;ﬁ%k%z]?‘?é’)k_ﬁl, where Q =
[ dz¢;(2)[€12]pa(z) plays the role of a Rabi frequency
(see [40]). The diagonalization of Eq. (2) leads to a trivial

eigenvalue E, = h%*k% /(2m) corresponding to spin com-
ponent a = 0, and to nontrivial eigenvalues

R, 1, PRE
Ea,ﬂ<kJ_) = q—|——2 |:kJ_ +ZkT:| + [—2 kka:| + Q-
(3)

The lower (higher) energy branch is labeled by a(f), with
corresponding eigenvectors

<)(aa(kl)> . <u+a(kl) ”—a(kl_>> <¢1,a(k—)) (4)
Xap(K1) up(ky) up(ky)) \gra(ky)/)’
written as linear combinations of ¢, ,(k_) and ¢, (k).
Expressions for the coefficients u, (k) and u4(k ) are
found in [40]. The absolute minimum of all eigenvalues,
where Bose-Einstein condensation occurs, depends on
parameters g and €, and is found in the lower band a.
We locate the minima of these energy bands by extremizing
with respect to k,. We work with dimensionless variables
and set k7 as the unit of momentum and E; = h%k%/(2m)
as the unit of energy. The scaled parameters are § = q/E7,
Q=Q/E;, and k| =Kk /kr.

In Fig. 2, we show the phase diagram of § versus Q
arising from Eq. (3). The dashed-green line corresponds to
the phase boundary §.(Q) = Q? for Q < 1/2, that sepa-
rates an easy-axis nematic BEC at k, =0 for spin
component a = 0, when § > §.(Q), from a double-well
easy-plane nematic BEC for spin components a = =£1,

when ¢ < g.(€2). The dotted-red line describes the phase
boundary g.(Q) = Q — 1/4 for Q > 1/2, that separates an
easy-axis BEC at k ;| = 0 for spin component ¢ = 0, when
g > §.(Q), from a single-well easy-plane nematic BECs
for spin components a = +1, when § < §.(Q). The
solid-blue line Q = 1/2 separates the easy-plane nematic
BECs in the a band into two sectors: (a) a double-well
phase where condensation occurs at finite momenta
(ko k) =(ko.,0), with kg=1/1/4—Q?, and (b) a single-
well phase where condensation occurs at zero momentum
k, =0. The solid-black dot at coordinates (g,Q) =
(1/4,1/2) represents a triple point.

Next, we discuss the interaction Hamiltonian
H,, = Hy,+ H,. The first term is the spin-independent
interaction A = (co/2L%)H,, with

Hy= > CpuyAii (k. K )AL (Ko k,y).  (5)
ki K p)

ad {nj)

where the subscripts {n;} denote the set of trapped states
with quantum numbers (n;, n,, n3, ny) that label the coef-

ficients Cy,,,y = [ dzy,, (2)@}, (2)@n, (2) @, (2). In Eq. (5),
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FIG. 2. Phase diagram of spin-1 Bose-Einstein condensates
with nematic-orbit coupling. Shown are the ground state energies
of Eq. (3) in the § versus Q plane. The diagram is separated
into three regions as discussed in the text. The modified
band structures are shown at four special coordinates (g = 0.75,
Q=1025), (7=0.75.Q=0.75), (g =-0.30,Q=0.25), and
(g = —0.30,Q = 0.75).

the momentaare k ,. =k, +p, /2andk/,, =k’ £p,/2,
and the operators are

Al?zz (kp—’ k;z+) = ¢Ill,fl(kp—)¢,:2’u’(k,p+)’

AL (Ko K ) = @ (K)o (K ). (6)
In the interaction Hamiltonian, the secor~1d term is the
spin-dependent interaction H, = (c,/2L% )H,, with

[:12 = Z C{n,}jZfJn4(kp—’ kp-‘r) : jﬁ/ﬁ; (k;)-&-’ k;—)’ (7)
kLk;pL
ad'bb' {n;}

where the vector operators

jzfm(kp—’ kp+) = ¢Zl~a(kp—>ﬁab¢n4,b(kp+)’
T, (& K, 2) = @h (K By, (K], (8)
contain the spin-1 matrices F.

The Hamiltonians [ r+ ﬁim preserve the magnetization
m, = n,; —n_y, where ny, is the density of bosons with
spin component a = %1, that is, m, is a conserved quantity
of the total Hamiltonian. From now on, we consider
only m, =0, in which case a phase transition occurs at
G. = 0 between the easy-plane nematic state |{p) (§ < G..)
with spin densities ny =0, n,; =n_; #0, and the
easy-axis nematic state |4) (g > g.) with spin densities
ng#0, n,, =n_, =0, as shown in Fig. 2, when Q =0
[1,14,19,21,23].

The effects of nematic-orbit coupling are also present in
the collective excitations. First, we investigate the easy-axis
nematic phase, where condensation occurs at k 1 =0 for

spin projection a = (. The Bogoliubov excitation spectrum
is then identical to a scalar condensate, &,(k,) =
[ex (€ + 2con,)]'/?, where n, is the total particle density
and &, = h*k3 /(2m) is the kinetic energy.

Next, we consider the easy-plane nematic phase in the
single-well regime when § < Q —1/4 and Q > 0.5. We
write the field operators ¢, , in terms of y,,, x5 as shown

in [40]. Condensation occurs at k ;| = 0 for the a band only,
thus we drop the a index from our notation. The resulting
Bogoliubov Hamiltonian is

A 1 E, D
H:GSW+§ZXL( >Xk. (9)

c\DTE;

The matrices for spin-preserving processes are

2%,
! ) (10)

E, - (Eg(kj_) +c
E/(k,)+c

fe 2%

where a = {+1, -1} is represented by {1,1}, E,(k ) =
E,(k ) — E,(0) is a measure of the excitation energy of
independent particles with respect to the minimum of the «
band, @, is the spin-dependent phase of the condensate in
the @ band at k| = 0 and ¢, f are proportional to the spin-
preserving interaction energy (¢, + ¢,)n,. The matrices for
spin-flip processes are

D _ dei(q)l_qji) gei(®T+¢l) (11)
ge_i(d)l+¢’f) de_i(cbl_cbf) ’
and D, where d and g are proportional to

the spin-flip interaction energy (cq—c,)n.. Last, in
Eq. 9), Gy, is the ground state energy and X]t =
b1 (k1) xi(=k 1) xi(k1) xi(=ky)] is a vector operator,

where )(Z represents the creation operator in the a band.
The positive eigenvalues in units of E; are

Eolky) = \JIE,(k) +(E-DP - (F-9%  (12)

where E,(k | )=E,(k, )/ Er is a dimensionless independent-
particle energy, & = (co + c)n.Aq(k 1)/ (4Er), f=(co+
co)n.B,(k )/ (4E7) are dimensionless spin-preserving inte-
raction energies and d = (cy — c3)n.A.(K,)/(4E7), §=
(co— c2)n.By(k )/ (4Er), are dimensionless spin-flip inter-
action energies. Here, A,(k ) =5/2+ |Q|/[/ A2+ Q7]
and B, (k) = 2 + 3|Q|/[2\/k? + Q7] describe the aniso-
tropic nature of the interactions induced by the nematic-orbit
coupling. When d= g = 0, thatis, ¢y = ¢,, the matrix D of
spin-flip processes vanishes and the spin sectors {1, 1} are
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FIG. 3. Anisotropic collective excitation modes of a nematic-

orbit coupled BEC. Excitation energies &,;(k) for easy-plane
nematic phases versus I~cx and l}y, with 7{ = 0 are shown in (a) and
(b) for the single-well case (7 = —0.3,Q = 1) and in (c) and
(d) for the double-well case (g = —0.3,Q = 1/4). The other
parameters are wavelength Ay = 2 ym, particle density n, =
2.5x 10" cm™ and interaction constants cqn./Er = 0.168
and cyn./Ep = 6.74 x 1073,

uncoupled leading to two degenerate linear modes at low
momenta. Assuming that ¢, > ¢, > 0 as in »*Na, we can
understand a few limits from Eq. (12). In the first mode,
the sum ¢ +d and f+ § are proportional to the spin-
independent interaction parameter c,, while in the second
mode, the difference ¢ — d and f — § are proportional to the
spin-dependent interaction parameter c¢,. Thus, the first
mode is associated with density-density interactions c,
while the second is associated with spin-spin interactions c,.
We plot the excitation spectra &, ; (k| ) and €, (k| ) versus
k, in Fig. 3(a) and versus k, in Fig. 3(b), with ¢, and ¢,
values for 2Na [43].

Last, we consider the easy-plane nematic phase
in the double-well region, when § < Q? and Q < 0.5.
Condensation occurs in two degenerate minima at +kyX of
the a band. There are four excitation modes involving left
(L) and right (R) wells and spin sectors a = {1, 1}. The
Bogoliubov Hamiltonian becomes

MLL

~ 1 M, ¢
H=G —§ Y]
aw T3 k(MRL

Y. (13)
MRR)

where Y] = [X] (k,) X} (k)] is an eight-dimensional
vector with four dimensional components X;(k 1) =

Tk ) xp (k) (k1) gyi(=ko)] in the j = {L,R}
sectors, and Gy, is the ground state energy. The M;;
matrices are given in [40] and the excitation spectrum is
obtained numerically, but a qualitative understanding is
possible. In each well there are equal numbers of atoms
with spin components a = {1, 1}, that is, n;; = n;g and
nip = nig. When all interactions are present and all
atoms oscillate in phase, this excitation corresponds to a

center-of-mass motion with linear dispersion and lowest
energy at low momenta, which is also anisotropic since the
effective mass is heavier along k.. When atoms with the
same spin projection a oscillate in phase in both L and R
wells, but out of phase with respect to their spin projections,
then a second linear mode arises with larger (larger)
velocity along k, (k,) in comparison to the center-of-mass
mode. When the spin-spin interactions are neglected and
atoms with spin projection a oscillate out of phase in L and
R wells they produce two degenerate linearly dispersing
modes. However, when spin-spin interactions are included
the degeneracy of these modes is lifted producing a linearly
dispersing mode with lower (higher) energy when the
relative motion of 1 and 1 is in (out of) phase. All four
modes éb,l(kl_>9 éb,Z(kL)’ éb,3(kl_>9 and éb,4(kj_) of the
excitation spectrum are shown in Figs. 3(c) and 3(d) for
23Na parameters.

Next, we analyze manifestations of the nematic-
orbit coupling in real space and focus on the easy-plane
nematic phases with ny = 0 and n,| = n_; # 0. Far below
the phase boundary §,.(Q), the effective Hamiltonian is
Hgp = Hip + Hy, with

P52 ik B2\
N +qF: Qe "' F W
Ax Ak 2 1

e /dzrl<l//1 %) (Qm‘ o B, p Z) < )
€lkTXF§ Py ng Yo

2m

(14)

where ¥, = [y, 1 (r ).y o(r L), Wz,i(ll)] represents the
2D condensate wave function in trap states with quantum
number n. The interaction Hamiltonian is I:II = f d3r7A{1,
where

Fy = () (W (0 45 1% ()= [ ()PP,
(15)

with ¢y > ¢, > 0 as in >Na, leading to the same local
condensate densities, that is, |¥,(r)> = |¥;(r)|%.

In the single-well phase, condensation occurs in the «
band at k, = 0. However, the wave function y,(r) in real
space is a linear combination of momentum shifted
[£(k7/2)X] condensates with relative phase 9 [40], result-
ing in a spatial variation of the form

\Pa (r) = Aswe_i(8/2) [ei[(kT/z)x_('g/2)](p2 (Z)
— e_i[(kT/Q'))H’(’g/z)](pl (Z)]’ (16)

where ¢;,(z) are the trap states along the z direction
and its period 4, = 2x/(ky/2) = 27 commensurate to the
period A7 of the periodic potential ¢(r, 7). The phase 9 = 0
[40] is determined by minimization of the free energy and
A, is obtained by normalizing the condensate density
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FIG. 4. Shown are easy-plane density modulations in real space
for (a) single-well, with 6 = 0.7, Z = z/8 and Q = 1 (solid-blue
line) and (b) double-well, with 6 = 0.7, Z = z/8 and Q=1 /4
(solid-green line). The dashed-red line shows the uniform density
profile of the easy-axis nematic phase. The periodic modulation
in (a) is commensurate with A, while in (b) there are two periods,
which are incommensurate with Ay. In (a) the period is
Ar = 2 pm, while in (b) the short period is 1, = 2.14 ym, while
the long period is A_ = 29.86 um.

ne(r) =Y .1 wa(r)]* to the total number of con-
densed particles N [40]. Therefore, the dimensionless
local condensate density 7i-(%) at some fixed Z,, descri-
bing a easy-plane single-period nematic density wave, can
be obtained by squaring the norm of Eq. (16) [40]. 7ic(%)
for 6 = 0.7, Q =1, and 7z = /8 is plotted in Fig. 4(a),
where X = kyx, Z = (2n/L,)z and 6 = N¢/N is the con-
densate fraction. It is uniform apart from the periodic
variation at the lattice period A7.

In the double-well phase, condensation occurs in the «
band at k| = +ky%. Thus, the wave function y,(r) in real
space is a linear combination of two single-well conden-
sates with momenta (ko £ k/2)X and phases 9, 9; » [40],
resulting in a spatial variation of the form

¥, ()= QWZ[uja(l]}o)ei{[lko+j(kr/2)]«‘—j(l9/2)+1(19LR/2)}](pj(Z)
=

(17)

with two periods A, = 2z/|ky & kr/2|, which are generi-
cally incommensurate with Ay. Here, we denote A}, =
Age P02 g (2) = @1(z) and ¢, (z) = ¢,(2) for
simplicity. The relative phase 9, 9;r were determined by
minimizing the free energy numerically [40], resulting in
8§ = 0. The energy functional contains a rapid oscillation at
the underlying period Ay as the system size L is varied
[40]. We chose kyL | = 250 and 9, = 0 to minimize the
energy over this oscillation, with the results shown in
Fig. 4(b). 9;r = & achieved similar results for other krL ;.
By squaring the wave function of Eq. (17), this leads to the
dimensionless condensate density describing a double-
period nematic density wave along x direction shown in
Fig. 4(b) for 7 = n/8 (see [40]).

In conclusion, we have proposed a mechanism for the
creation of nematic-orbit coupling in spin-1 condensates

and uncovered their phase diagram and excitation spectra.
Our work connects orbital motion of atoms to the rich
physics of spin nematics, and opens up a new direction to
explore strongly correlated spin-nematic states. Future
work may include higher spin systems and coupling to
other tensor components (A)l-j. Extension to higher dimen-
sions could allow nontrivial topology to be explored,
analogous to half-quantum vortices in ordinary nematics
[44], which have parallels in solid state systems [45,46].
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