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The low-lying spectra of atomic nuclei display diverse behaviors, for example, rotational bands, which
can be described phenomenologically by simple symmetry groups such as spatial SU(3). This leads to the
idea of dynamical symmetry, where the Hamiltonian commutes with the Casimir operator(s) of a group,
and is block diagonal in subspaces defined by the group’s irreducible representations or irreps. Detailed
microscopic calculations, however, show these symmetries are in fact often strongly mixed and the wave
function fragmented across many irreps. More commonly, the fragmentation across members of a band are
similar, which is called a quasidynamical symmetry. In this Letter I explicitly, albeit numerically, construct
unitary transformations from a quasidynamical symmetry to a dynamical symmetry, adapting the similarity
renormalization group (SRG) in order to transform away the symmetry-mixing parts of the Hamiltonian.
The standard SRG produces unsatisfactory results, forcing the induced dynamical symmetry to be
dominated by high-weight irreps irrespective of the original decomposition. Using spectral distribution
theory to rederive and diagnose standard SRG, I introduce a new form of SRG. The new SRG transforms a
quasidynamical symmetry to a dynamical symmetry, that is, unmixes the mixed symmetries, with
intuitively more appealing results.

DOI: 10.1103/PhysRevLett.124.172502

The spectra of atomic nuclei display a rich portfolio of
behaviors, the most striking of which are rotational and
vibrational bands. These can be elegantly described using
spectrum-generating algebras whose eigenspectra as well as
transition probabilities (up to an overall scale) capture
experimental data. This leads to the idea of a dynamical
symmetry [1,2], marked by theHamiltonian commutingwith
the group’s Casimir operator and the wave functions wholly
containedwithin a single irreducible representation (irrep) of
the underlying group. Dynamical symmetries of this kind are
mostly invoked in nuclear structure physics, with some
discussions in atomic and molecular physics [3–7].
The problem is, microscopic calculations showing true

dynamical symmetries are rare. Standardpieces of the nuclear
force, such as spin-orbit splitting and pairing [8–11], strongly
break the symmetry andmix irreps. This is puzzling in light of
the fact that one can empirically use algebraic methods to
reproduce data. A further piece of the puzzle is the existence
of quasidynamical symmetries [12–14], where the pattern of
mixing symmetries, although often very complex, is similar
across members of a band.
In this Letter I adapt a method, the similarity renorm-

alization group (SRG), to generate a unitary transformation
that largely unmixes the symmetry. (I use “mixing” rather
than “breaking” symmetry because the former better
matches the continuous process described below.) The
standard SRG, however, produces for some states unsat-
isfactory results, so I introduce a novel variant of SRG
which provides more intuitively appealing results. Thus I
can transform away the symmetry-mixing terms in a

Hamiltonian. As a bonus, a new light is shed on the
behavior of SRG, a widely used method.
To illustrate the mixing of symmetries I decompose

nuclear wave functions, calculated via configuration-
interaction, into subspaces defined by irreducible repre-
sentations. Let Ĉ be a Casimir operator for a group, and let
z denote eigenvalues of the Casimir, so that Ĉjz;αi¼zjz;αi.
The eigenvalues are highly degenerate and can label
subspaces or irreducible representations. An familiar
example is the rotation group, with the Casimir Ĵ2 with
eigenvalues jðjþ 1Þ labeling subspaces of good total
angular momentum. For a given state jΨi, define the
fraction of the wave function in a subspace labeled by z as

fðzÞ ¼
X

α

jhz; αjΨij2: ð1Þ

For dynamical symmetries, fðzÞ ¼ 1 for some value of z,
and zero for all other values. For any state, however, one
can calculate fðzÞ efficiently [11,15,16].
Figure 1 shows calculations of 36Ar in the 1s1=2 −

0d3=2 − 0d5=2 or sd shell, which has a frozen 16O core,
using the phenomenological universal sd interaction
version “B” (USDB) [17], which I decomposed using
the quadratic SU(3) Casimir, Ĉ2 ¼ Q⃗ · Q⃗þ 3L2, where
L is orbital angular momentum and Q⃗ is the so-called
Elliott quadrupole operator. The eigenvalues of Ĉ2 can be
expressed in terms of integer quantum numbers λ and μ,
4ðλ2 þ λμþ μ2 þ 3λþ 3μÞ [1]. Because I use only one of
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two SU(3) Casimirs, the decompositions are in many cases
sums of irreps. One can interpret the results in terms of
ðλ; μÞ of SU(3), but I leave those off precisely because those
details, while of interest to the specialist, are irrelevant to
the points being made here. I chose 36Ar because it is
tractable for the following calculations, has strong mixing,
yet clearly demonstrates a quasidynamical symmetry. Other
nuclides show similar results.
Note that the pattern of fragmentation of the wave

function over irreps is repeated across several states
[8,11]. This is an example of quasidynamical symmetry,
which turns out to be surprisingly commonplace.
Seeing the repeated patterns of quasidynamical sym-

metries, it is natural to wonder if one could transform away
the symmetry-mixing terms to regain a true dynamical
symmetry. While it is not yet known how to choose
analytically such a unitary transformation, there does
exist a well-known method for numerically constructing
unitary transformations, the similarity renormalization
group [18–24]. SRG is widely used in nuclear physics
to soften nuclear forces for ab initio calculations, by
approximately decoupling low-momentum and high-
momentum states, with analogous applications in atomic
and molecular physics [25], nonrelativistic reduction of the
Dirac equation [26], and particle physics [27]. In each case
one uses SRG to approximately decouple a model space
from the rest of the space to improve convergence of
calculations. Here I present a novel use of SRG to decouple
or unmix group symmetries. The beauty of this approach is

that it does not require explicit knowledge of the origin of
symmetry mixing.
Consider a parametrized unitary transformation

of a Hamiltonian, ĤðsÞ ¼ ÛðsÞĤÛ†ðsÞ, and let η̂ ¼
ðdÛðsÞ=dsÞÛ†ðsÞ be an anti-Hermitian operator. Then
one can construct an equation for unitary evolution,

dĤðsÞ
ds

¼ ½η̂; ĤðsÞ�: ð2Þ

For standard SRG, one introduces a fixed Hermitian
operator called the generator, Ĝ, and then choose

η̂ ¼ ½Ĝ; ĤðsÞ�: ð3Þ
To soften the nuclear interaction, one typically uses the

kinetic energy operator T̂ as the generator; there are other
generators for other applications, such as the in-medium
SRG [23,24]. Instead, here I chose Ĝ to be −Ĉ2 of SU(3)
(the minus sign is because one knows [28] that −Q⃗ · Q⃗ is an
approximate component of the nuclear force), although in
principle one could use any group Casimir. In order to
ensure exact unitarity, I act directly on the many-body
matrix, which here is of dimension 640; thus the energy
spectrum is unchanged, which was confirmed after evolu-
tion. The differential equation is solved using fourth-order
Runge-Kutta. (There are more sophisticated methods for
solving SRG [29], but Runge-Kutta is straightforward to
code.) Because the SU(3) Casimir has no meaningful
dimensions, I rescaled η̂ so that the two-norm jjη̂jj ¼ 1,
and the evolution parameter s is dimensionless.
Figure 2 shows decompositions for two states, the 0þ1

ground state and the 2þ2 state, as the Hamiltonian is evolved
under SRG, starting at s ¼ 0 along the top row, and then
increasing to s ¼ 2 along the bottom row. While the
Hamiltonian is evolved, the decomposition was performed
using the original SU(3) Casimir. The left-hand column
shows the evolution for the 0þ1 ground state under the
“standard” SRG, which uses Eq. (3), while the middle
column shows the same for the 2þ2 state. In both cases the
decomposition evolves to a single irrep, that is, dynamical
symmetry.
Yet upon closer inspection, something goes “wrong”

under SRG evolution. While the ground state essentially
has all its strength going into the irrep which already has the
largest fraction, as one might expect or at least hope for,
the 2þ2 state goes to a higher-weight irrep barely occupied in
the original decomposition.
Why does SRG drive the fractional distribution to the

“wrong” irreps? To understand this, I borrow concepts from
spectral distribution theory [30–32]. A key idea in spectral
distribution theory is the introduction of an inner product
on a linear space of Hermitian operators, represented by
finite Hermitian matrices with dimension N. For two such
operators, A, B (from here on I use boldface type to
emphasize they are finite matrices), the inner product is
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FIG. 1. Low-lying levels and SU(3) decompositions for 36Ar in
the sd shell using the USDB interaction. Panels (a)–(c) show the
ground state band, while panels (e) and (f) show the excited γ
band. Panel (d) shows the calculated excitation energies.
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ðA;BÞ ¼ 1

N
trAB −

1

N
trA

1

N
trB: ð4Þ

With an inner product one can define how close or different
two Hermitian operators are, and even define an “angle”
between two interactions.
Now suppose we want a unitary transformation on a

Hamiltonian H that makes it as close as possible to the
generatorG. BecauseN is fixed,G is fixed, and, by unitarity,
trH is fixed; this means we want to maximize trGHðsÞ.
While guaranteeing a global maximum is not trivial, let us
suppose we follow the generic evolution Eq. (2) and choose
to maximize the rate at which the unitary transformation
increases trGHðsÞ; that is, we want to maximize

d
ds

trGHðsÞ ¼ trG
d
ds

HðsÞ ¼ trG½η;HðsÞ�; ð5Þ

where I usedEq. (2) to replace the derivative.Using the cyclic
property of traces, trAB ¼ trBA, one can rewrite the right-
hand side of Eq. (5):

trG½η;HðsÞ� ¼ trGηHðsÞ− trGHðsÞη
¼ trηHðsÞG− trηGHðsÞ¼ trη½HðsÞ;G�; ð6Þ

which is maximized when the antisymmetric matrix
η ¼ ½HðsÞ;G�T ¼ ½G;HðsÞ�. Standard SRG is defined by
maximizing the rate HðsÞ approaches the generator G,
forcing HðsÞ to be as similar as possible to G.
This explains the behavior of mixed symmetries under

standard SRG: by forcing H to be as similar as possible to
the SU(3) Casimir −C2, standard SRG tries to match
extremal eigenpairs: low-lying states of H are driven to
be like high-weight states of the Casimir.
I now present an alternative. Recall that a dynamical

symmetry is when a Hamiltonian merely commuteswith the
Casmir(s) of a group. Thus, for my purposes here, a more
appropriate condition is to maximize tr½G;HðsÞ�†½G;HðsÞ�,
or, more practically, choose the evolution equation that
maximizes its decrease. Following the same methodology
as before, one arrives at a modified SRG procedure, with

η̂ ¼ ½½½G;HðsÞ�;HðsÞ�;G�: ð7Þ

Properly coded, this only takes twice as much time as the
original SRG. The right-hand column of Fig. 2 shows the
decomposition of the 2þ2 state under this “new” SRG. Now
the strength is pushed to irreps already in the plurality in the
original decomposition. (The decomposition of the 0þ1 state
under both SRGs is nearly indistinguishable).
These results are not unique. Figure 3 shows the

decomposition for the six lowest states, using both SRG
equations, evolved to s ¼ 3. For the ground state band (left-
hand column, the 0þ1 ; 2

þ
1 ; 4

þ
1 states), the decompositions are

indistinguishable and I show only the results from standard
SRG. For the 0þ2 ; 2

þ
2 ; 4

þ
2 states, there is a difference, with

standard SRG leading to the wave function being predomi-
nant in a higher-weight (and, compared to decomposition
of states from the unevolved Hamiltonian, wrong) irrep,
while the decomposition for states from the new SRG better
reflect the unevolved state. Note that under the new SRG a
secondary component persists; evolving further to s ¼ 5,
the results are little changed.
More insight about the evolution can be gleaned from

Fig. 4. Using the inner product (4), one can calculate the
angle between any two Hamiltonian-like operators.
Figure 4(a) shows the angle between the generator G [here
−C2, the SU(3) Casimir] and the evolved Hamiltonian
HðsÞ, while Fig. 4(b) shows the angle between the evolved
Hamiltonian and the original Hð0Þ, with solid black lines
for the standard SRG and dashed (red) lines for the new
SRG. In both measurements, the new SRG evolves the
Hamiltonian “less far away” than standard SRG.
This is confirmed in Table I, which gives the numerical

overlap between the wave functions from the unevolved
Hamiltonian, and Hamiltonians evolved by the standard
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FIG. 2. Decomposition of the 0þ1 and 2þ2 states of 36Ar, using
original (s ¼ 0) and SRG-evolved (s > 0) Hamiltonians. Here s
is dimensionless. The top row, (a), (e), and (i), gives the
decompositions for states from unevolved Hamiltonians. The
left-hand column, (a)–(d), shows the evolution under the standard
SRG for the 0þ1 state. The middle column, (e)–(h), shows the
evolution under standard SRG for the 2þ2 states, while the right-
hand column, (i)–(l), shows the evolution under the new SRG for
the 2þ2 state. Not shown is the evolution of the 0þ1 state under the
new SRG, which is nearly indistinguishable to the evolution
under standard SRG.
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and new SRG out to s ¼ 3. It confirms that the ground state
band, which is dominated by the highest weight irrep, has
nearly identical evolution under both SRGs, but that for the
0þ2 ; 2

þ
2 ; 4

þ
2 states, the new SRG leads to states with a much

larger overlap with the unevolved states than standard SRG.
Because the motivation of the new SRG was to reduce

the commutator ½HðsÞ;G�, Fig. 4(c) shows the magnitude
of the commutator, normalized to 1 at s ¼ 0. The magni-
tude is computed using the two-norm, but because the
commutator is an antisymmetric matrix, this is the same as
Eq. (4) up to a minus sign. The commutator for the new
SRG indeed drops more rapidly at first, although for large s
the standard SRG overtakes it.
It is well known that SRG induces many-body forces

even when starting from purely two-body interactions. In
my evolution I worked directly with the many-body
Hamiltonian. Nonetheless, I estimated the amount of
induced many-body forces. At s ¼ 0, most of the matrix
elements of H are in fact zero, due to the two-body nature
of the Hamiltonian. For s > 0, I measured what fraction
of trH2 came from those matrix elements that were
originally zero. Shown in Fig. 4(d), this at the very least
gives a lower limit on the induced many-body interactions.
Unsurprisingly given the triple commutator of Eq. (7), the

new SRG induces a larger fraction of many-body compo-
nents, but still of comparable size to the standard SRG. In
practical applications one will likely have to either include
the induced three-body terms [21] or carry out some
effective procedure such as in-medium SRG, where one
normal orders three-body and higher-order terms with
respect to a reference state [23,24]. Because such proce-
dures work well with standard SRG, there is no reason to
think it will be different here.
Although I only show the case of 36Ar, other nuclides

show similar behavior. When the decomposition is highly
fragmented and the wave function from the unevolved
Hamiltonian is not dominated by a single irrep, both SRG
procedures will still drive the decomposition to a single
irrep: the original SRG will still evolve to a high-weight
irrep, even if that irrep had a small occupation originally,
while under the new SRG the evolved dominant irrep tends
to be near the average of the previously occupied irreps.
The implications of this behavior will be investigated in
future work.
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FIG. 4. Tracking the evolution as a function of s of the
Hamiltonian for 36Ar, with solid (black) line for standard SRG
and dashed (red) line for the new SRG. (a) Angle, as defined by
spectral distribution theory (see text for details), between evolved
ĤðsÞ and the generator G, here the quadratic SU(3) Casimir.
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nitude at s ¼ 0. (d) Estimated fraction of ĤðsÞ with induced
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TABLE I. Overlaps between configuration-interaction wave
functions, calculated using the unevolved (s ¼ 0) Hamiltonian
and evolved to s ¼ 3 using the standard and new SRG.

0þ1 2þ1 4þ1 0þ2 2þ2 4þ2
hψðs ¼ 0Þjψ stdðs ¼ 3Þi 0.669 0.719 0.717 0.008 0.336 0.382
hψðs ¼ 0Þjψnewðs ¼ 3Þi 0.643 0.696 0.702 0.561 0.695 0.836
hψ stdðs¼3Þjψnewðs¼3Þi 0.999 0.992 0.991 0.007 0.201 0.170
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In summary, I have shown how to construct a unitary
transformation that undoes mixed symmetries, by trans-
forming away symmetry-mixing terms, leading to a system
with nearly pure dynamical symmetry. Furthermore,
I introduced and demonstrated a new version of SRG that,
at least in some aspects, provides superior behavior
over standard SRG. One possible application beyond
“unmixing" symmetries would be in symmetry-adapted
structure calculations [33], which rely upon the wave
functions being dominated by a few irreps; by reducing
the fragmentation into other irreps, such calculations could
be closer to the full-space results. Because this new SRG
decouples differently from, and in some cases demon-
strably better than standard SRG, it may have applications
beyond unmixing symmetries.

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Nuclear
Physics, under Award No. DE-FG02-96ER40985.
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