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It is commonly believed that the Sivers function has uniquely to do with processes involving a
transversely polarized nucleon. In this Letter we show that this is not necessarily the case. We demonstrate
that exclusive pion production in unpolarized electron-proton scattering in the forward region is a direct
probe of the gluon Sivers function due to its connection to the QCD odderon.
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Introduction.—Recently, there has been renewed inter-
est in the interplay between spin physics and small-x
physics, largely motivated by the necessity to understand
the small-x behavior of the helicity distributions inside a
longitudinally polarized proton. Generally speaking,
polarization effects are suppressed by an inverse power
of energy compared to unpolarized ones, but they are
enhanced by double logarithms in energy. The resumma-
tion of these logarithms is a particularly challenging
problem which has been first addressed by Bartels,
Ermolaev, and Ryskin [1]. Recent activities include
calculations of various higher order corrections [2] and
the generalization to the orbital angular momentum sector
[3], as well as alternative approaches to resummation
[4–6].
Meanwhile, another very interesting, and rather un-

expected interplay between spin and small-x physics has
been elucidated by Zhou [7] (see also Refs. [8–10]) in the
transverse polarization sector. It was observed that the
gluon Sivers function is related to the odderon in small-x
processes that are sensitive to transverse polarizations.
The Sivers function [11] is a transverse momentum
dependent (TMD) parton distribution function that has
been exclusively discussed in the context of transverse
single spin asymmetry (SSA). It turns out that the gluonic
version of the Sivers function, despite its obvious con-
nection to spin is not power suppressed by energy, but
instead evolves with leading single (not double)

logarithms at small x. Moreover, this evolution equation
is identical to that for the odderon amplitude in QCD
which has been well established in the literature [12–15].
The numerical solution of the evolution equation [16]
carries various phenomenological implications that can be
tested in future measurements of SSA involving heavy
quarks.
In this Letter, we dig into this correspondence to a deeper

level and establish relations between the odderon and the
so-called generalized TMDs (GTMDs) [17]. A similar
study has been done in Ref. [18], but the target polarization
effect was neglected. We show that, for spin-1=2 hadrons
such as the proton, there are three independent GTMDs that
can be associated with the odderon. Only one of them
survives in the TMD (forward) limit and becomes the gluon
Sivers function. Moreover, we observe that, once reinter-
preted as a GTMD, the Sivers function is not necessarily
tied to the transverse polarization of the incoming state.
This opens up an intriguing possibility that one can
experimentally access the gluon Sivers function in unpo-
larized collisions. Specifically, we calculate the differential
cross section dσ=dt for the exclusive process
ep → e0γ�p → e0π0p0, where both the incoming electron
and proton are unpolarized. Since the (virtual) photon and
the pion have opposite C parities, at high energy this
process is dominated by the odderon exchange which is C
odd. We then show that, among the three odderon GTMDs
that contribute to this process, the one corresponding to the
gluon Sivers function gives the leading contribution in the
forward region t ≈ 0.
Odderon and GTMDs.—In this section, we clarify the

relation between the odderon amplitude and gluon GTMD
distributions. The general parametrization of dipole-type
gluon GTMDs can be easily adapted from the quark case
[17] and reads [19,20]
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where the trace is in the fundamental representation and we
defined the staple gauge links

U ½��
x;y ¼ ½x−;�∞�x½x; y��∞½�∞; y−�y: ð2Þ

The notation ½x; y�z denotes a straight Wilson line from y to
x at fixed z. We defined P̄μ ¼ ½ðPμ þ P0μÞ=2�, Δμ ¼ P0μ −
Pμ is the momentum transfer, and M is the proton mass.
The spinors with momenta P and P0 have associated spin
vectors S and S0, which we will write explicitly hereafter.
Boldface letters denote transverse vectors and i, j ¼ 1, 2
are their indices. The four complex-valued GTMDs Fg

1;n

(n ¼ 1, 2, 3, 4) are functions of (x, ξ, k, Δ), where ξ ¼
−ðΔþ=2P̄þÞ is the skewness parameter. The following
symmetry properties are known [17]

Fg�
1;nðx;ξ;k2;k ·Δ;Δ2Þ¼�Fg

1;nðx;−ξ;k2;−k ·Δ;Δ2Þ; ð3Þ

with a þ sign for n ¼ 1, 3, 4 and a − sign for n ¼ 2. In the
following, we shall always be interested in the ξ ≃ 0 limit
which is typically satisfied in small-x kinematics. We can
then write

Fg
1;n ¼ f1;n þ i

ðk · ΔÞ
M2

g1;n; ð4Þ

for n ¼ 1, 3, 4, and

Fg
1;2 ¼

ðk · ΔÞ
M2

f1;2 þ ig1;2; ð5Þ

where f and g functions are real functions which depend on
x, k2, jk · Δj, Δ2. In the small x approximation, we will set
x ≃ 0 in the phase of the left-hand side (l.h.s.) of Eq. (1).
Following the same manipulations as in Ref. [21], we can
rewrite Eq. (1) as

Z
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whereUv ¼ ½∞;−∞�v. The dependence on x on the l.h.s. is
hidden in the regularization of the lightlike Wilson line
operators in the small-x effective formalism [22–24]. Note
that the Fg

1;4 term has been neglected in Eq. (6). Indeed in

the eikonal approximation eixP̄
þv− ≈ 1, this term vanishes

due to its PT symmetry [25]. Also note that this expression
is finite despite the denominator, due to the remarkable
simplicity of dipole-type GTMDs, which are all propor-
tional to this denominator. See, for example, Ref. [21]. The
real, ðv ↔ −vÞ-even part of the dipole operator is identified
with the Pomeron, while the odderon is the imaginary,
ðv ↔ −vÞ-odd part [13],

1

Nc
TrðUðv=2ÞU

†
−ðv=2ÞÞ − 1 ¼ PðvÞ þ iOðvÞ: ð7Þ

It is easy to see that, on the l.h.s. of Eq. (6), the Pomeron
term is even in k ↔ −k, while the odderon term is odd
under this exchange. The latter reads, with the parametri-
zations from Eqs. (4), (5),

Z
d2ve−iðk·vÞhP0;S0jiOðvÞjP;Si

¼g2sð2πÞ4δðP0þ−PþÞ P̄
þ

4M
kj

Ncðk2−Δ2

4
Þ
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This is the most general parametrization of the dipole-type
odderon coupling to a generic spin-1=2 hadron. We see that
the odderon is characterized by three independent GTMDs
g1;n (n ¼ 1, 2, 3). It is interesting to notice that by using the
Gordon identity in the first term

ūP0S0uPS ¼
M
P̄þ ūP0S0γ

þuPS þ ūP0S0 iσþi Δi

2P̄þ uPS; ð9Þ

we recognize a vector coupling between the odderon and
the hadron, or “vector odderon” [26]. For the odderon to be
a pure vector odderon, we would need the relations
g1;1 ¼ 2g1;3, g1;2 ¼ 0. However, in general they are inde-
pendent distributions. We also see that the vector odderon
vanishes in the forward limit Δ → 0. In the near-forward,
spin nonflip scattering of a proton, the three terms in Eq. (8)
behave like

iðk ·ΔÞg1;1; ðk× sÞzg1;2; ðk ·ΔÞðΔ×SÞzg1;3: ð10Þ

Since the odderon amplitude is a scalar function and is
odd under k → −k, it should be proportional to the
vector k, contracted by another two-dimensional vector.
Equation (10) exhausts all possibilities in this kinematics.
g1;1, to which we will refer as the vector odderon term, is
associated with momentum transfer Δ (or impact parameter
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b in the coordinate space). This exists even for spinless
hadrons, and the odderon coupling discussed in most
literature [7,12,18,27–30] is of this type. g1;2 is the spin-
dependent odderon [7]. To our knowledge, the structure of
the last term g1;3, let us call it the spin-vector odderon, has
not been identified in the literature. This features a sine
correlation between the azimuthal angles of Δ and S which
may lead to distinct experimental signals.
In the forward Δ ¼ 0 limit, only g1;2 ¼ ImðFg

1;2Þ sur-
vives. If we further assume that the proton is transversely
polarized, we find the familiar structure of the Sivers
function

k2
Z

d2ve−iðk·vÞhPSjiOðvÞjPSi∝ 2
ðk×SÞz
M2

ImðFg
1;2Þ; ð11Þ

with the identification

2ImðFg
1;2Þðx; 0; k; 0Þ ¼ −xf⊥g

1T ðx; k2Þ: ð12Þ

Interestingly, and importantly for our purpose, the relevant
spinor product is nonvanishing also for a generic helicity
flip contribution

kiūPS0σþiuPS ∝ ðk × hÞzδh;−h0 ; ð13Þ

where h ¼ ð1= ffiffiffi
2

p Þð1; ihÞ is a transverse vector built from
proton helicity h ¼ �1 which resembles a circular polari-
zation vector in the transverse plane. We thus find that the
gluon Sivers function appears not only in processes
involving a transversely polarized proton, but also in
unpolarized processes where the proton spin flips. This
includes unpolarized collisions where one independently
sums over the polarizations of the initial and final proton
helicities. This is the key observation that will be further
explored in the next sections.
Exclusive diffractive pion production ep → e0π0p0 at

small x.—In this section, we compute the differential cross
section of exclusive pion production ep → e0π0p0 at high
energy. The process is depicted in Fig. 1. Since the virtual
photon and the pion have negative and positive C parity,
respectively, the exchanged object in the t channel has
negative C parity. The process is thus a classic example of
possible odderon signatures [31]. Instead of π0, one can
also consider ηc [27]. However, the rate will be smaller and
ηc is more difficult to reconstruct. We will use the standard
variables for deeply virtual meson production (DVMP)

Q2 ¼−q2; xB¼
Q2

2ðP ·qÞ ; t¼Δ2; y¼ ðP ·qÞ
ðP ·lÞ : ð14Þ

Note that in the eikonal approximation, t ≈ −Δ2. The value
of skewness ξ is approximately equal to x ≈ xB=2 in this
kinematics, and it is understood that all the GTMDs below
are evaluated at ξ ≈ x. Strictly speaking, this is different

from the limit considered in the previous section ξ ¼ 0 at
small but nonzero x. While the two limits are not the same
in general, the small-x evolution does not differentiate them
at least in the leading logarithmic approximation. We thus
identify the two limits but the difference should be kept in
mind and scrutinized further. The computation of the
amplitude at small x performed in this Letter relies on
the covariant background field methods [22–24,32–34].
The outgoing quark and antiquark fields in the shock wave
background created by the target gluon fields are

ψ̄ effðx0Þ ¼ θðx−0 Þψ̄ðx0Þ þ θð−x−0 Þ

×
Z

d4x1δðx−1 Þψ̄ðx1Þγ−Gðx10ÞðUx1 − 1Þ ð15Þ

for the quark, and

ψ effðx0Þ ¼ θðx−0 Þψðx0Þ − θð−x−0 Þ

×
Z

d4x2δðx−2 ÞGðx02Þγ−ψðx2ÞðU†
x2 − 1Þ ð16Þ

for the antiquark, where x−1;2 ¼ 0 is the time of interaction
with the shockwave and G is the free fermion propagator.
From these two effective fields, we can build the amplitude
for DVMP as

A ¼ efel
4Nc

ūl0γμul

Z
d4x0d4x1d4x2θð−x−0 Þδðx−1 Þδðx−2 Þ

× hπ0jψ̄ðx1ÞΓλψðx2Þj0ihP0jTrðUx1U
†
x2Þ − NcjPi

× e−iðq·x0ÞGμνðqÞTr½γ−Gðx10ÞγνGðx02Þγ−Γλ�; ð17Þ

where ef is an effective electric charge which takes into
account the flavor content of the meson, and Gμν is the
photon propagator and the sum over Fierz matrices Γλ is
implied. We evaluate this at leading s-channel twist by

FIG. 1. Electroproduction of a π0 meson at small x. The gray
blob represents the interaction with the background field, and the
white blob represents the distribution amplitude of the meson.
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taking the light cone expansion of the bilocal vacuum-to-
meson correlator hπ0jψ̄ψ j0i. Projecting onto the axial-
vector state ðΓλÞðΓλÞ → ðγλγ5Þðγ5γλÞ to take into account
the properties of the leading twist chiral-even DA for the
pion

hπðpπÞjψ̄ðx1Þγλγ5ψðx2Þj0i

¼ ifπpλ
π

Z
1

0

dzeizðpπ ·x1Þþiz̄ðpπ ·x2ÞϕπðzÞ; ð18Þ

and following computation steps are very similar to what is
described in Ref. [35]; one gets

A ¼ −efelfπ
Nc

δðq− − p−
π Þūl0γμul

Z
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× ϵαβþ−
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dzϕπðzÞr⊥α

ffiffiffiffiffiffiffiffiffiffi
zz̄Q2
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r
K1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
Þ

× hP0jTrðUbþz̄rU
†
b−zr − 1ÞjPiGμνðqÞðq−gν⊥β − nνq⊥βÞ;

ð19Þ

where z̄ ¼ 1 − z. ϕπ is the pion’s leading twist axial-vector
distribution amplitude (DA) and fπ ¼ 131 MeV is the
decay constant. As expected, the amplitude (19) involves
the t channel exchange of an odderon. Indeed, the sym-
metry property of the DA ϕπðzÞ ¼ ϕπðz̄Þ means that the
r ↔ −r antisymmetric contribution from the dipole matrix
element contributes, i.e., its imaginary part is selected by
the C parity of the process. To make the connection to the
odderon GTMDs explicit, we use the Fourier transform of
Eq. (8), which is a particularly simple case of the general
formula derived in Ref. [36]. Using these results, Eq. (19)
then becomes

A ¼ efelfπ
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Let us focus on the small Δ limit in which Eq. (20)
simplifies drastically. Only g1;2 ∝ f⊥g

1T survives in this limit
and the amplitude becomes proportional to

A ∝
Z

d2k
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¼ −
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where in the second line we used the relation

Z
d2kxf⊥g

1T ðx; k2Þ ¼ 0: ð22Þ

This relation was first noted in Ref. [7] within a specific
model, but it is actually a general result [37].
In order to get the cross section, one has to square

Eq. (20) and sum over the initial and final proton spins. As
can be seen from Eq. (13), a nonvanishing contribution
arises when the proton flips spin S ¼ −S0. Taking into
account the quark content of the pion jπ0i ¼ ðjuūi −
jdd̄iÞ= ffiffiffi

2
p

so that ef ¼ ðeu − edÞ=
ffiffiffi
2

p ¼ e=
ffiffiffi
2

p
, we thus

arrive at the main result of this Letter
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cM2Q6

�
1 − yþ y2

2

�

×

�Z
1

0

dz
ϕπðzÞ
zz̄

Z
dk2

k2
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�
2

; ð23Þ

valid in the forward region t ≈ 0, and for perturbative
values of Q. The corrections to this formula are of order
t=M2, where M is the target mass. Quite remarkably, the
leading contribution to this unpolarized observable is given
by the gluon Sivers function which is usually associated
with a transversely polarized nucleon, and this has been
missed in all the previous calculations. However, some
moderate x models suggested that this reaction can probe
the nucleon tensor charge [38]. We expect that a similar
conclusion holds in related observables such as ηc pro-
duction. It is easy to check by retracing the steps from
Eqs. (20)–(23) that only the transversely polarized virtual
photon contributes to this formula. In the large-Q2 region,
the cross section is directly related to the C-odd collinear
three-gluon correlator Oðx1; x2Þ relevant to single spin
asymmetry [7,39]

Z
dk2k2xf⊥g

1T ðx; k2Þ ∝ Oðx; xÞ þOðx; 0Þ: ð24Þ

Note, however, that neglecting k2 in the denominator of
Eq. (23) results in an end-point singularity at z, z̄ ¼ 0. In
practice, this should be cutoff at z, z̄ ∼ Λ2=Q2, leading to a
logarithmic enhancement ln2Q2=Λ2 at large Q2. As an
example, consider the asymptotic form ϕπðzÞ ¼ 6zz̄ and a
simple model for the Sivers function at small x built in
Ref. [7],

xf⊥g
1T ðx; k2Þ ¼ C

k2

Λ4

�
2 −

k2

Λ2

�
e−k

2=Λ2

; ð25Þ

where C is a dimensionless constant. We find
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For Λ ≪ Q, the exponent peaks the integrand around
α ¼ 0, which allows for a fully analytical integration:

dσ
dxBdQ2djtj ¼ π5

α2emα
2
sf2π
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�
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: ð27Þ

Discussions.—That the cross section dσ=dt does not
vanish in the forward limit Δ → 0 is quite nontrivial. As we
mentioned above, only the transversely polarized virtual
photon contributes to the cross section. The polarization
vector of the photon must then be contracted with another
transverse vector. For the case of pion production, and
without considering proton spin effects, the only available
vector is momentum transfer Δ. This is why the odderon
contribution to dσ=dt vanishes in the t ≈ −Δ2 → 0 limit in
Refs. [27,30,40] (see also Ref. [41]). In contrast, Ref. [31]
obtained a finite result in the same limit. This is because the
authors of Ref. [31] considered processes where the proton
is excited to a negative parity resonance N�, which is
modeled as a p-wave bound state of a diquark and a quark.
The p-wave wave function involves a transverse vector
which can be contracted with the photon polarization
vector, thereby giving a finite result at t ¼ 0. We, however,
note that considering the excitation and decay of the target
proton introduces extra theoretical uncertainties.
Our central observation in this paper is that the required

vector can come from the spin-1=2 nature of the proton.
The spin-dependent odderon accompanies the spinor prod-
uct ūσþiu, which carries a transverse vector index. This is
nonvanishing provided the proton flips spin S0 ¼ −S [see
Eq. (13)], and such spin-flip contributions are automatically
included when calculating unpolarized cross sections. One
may wonder why the proton can flip helicity in the eikonal
approximation in the forward limit. Equation (8) shows that
this can occur nonperturbatively, assisted by the transverse
vector k which carries one unit of angular momentum. It is
also a necessary consequence of the existence of the spin-
dependent odderon.
We should add that our calculation is valid when Q2 is

perturbative, say, Q2 > a few GeV2 since this is the only
hard scale. Some might be tempted to assume that at
sufficiently high energy, the gluon saturation scaleQs could
serve as a hard scale. However, as demonstrated in
Ref. [16], the characteristic momentum scale of the odd-
eron amplitude does not scale with Qs.

The previous odderon search at HERA [42] measured
neutrons from the reaction p → N� → n based on a
calculation in Ref. [31], and no signal was observed. We
propose to measure the elastically scattered proton in the
final state instead. In the near forward region, one should
see the flattening of the curve dσ=dt as t → 0 before
reaching the (diverging) contribution from the Primakoff
process γ�γ → π0 in the small-t limit:

dσPrimakoff

dxBdQ2djtj ≈
ð2πÞα4emf2πð1þ ð1 − yÞ2Þ

xBQ6jtj
�Z

1

0

dz
ϕπðzÞ
ϕ∞
π ðzÞ

�
2

;

ð28Þ

where ϕ∞
π is the asymptotic DA ϕ∞

π ðzÞ ¼ 6zz̄, and the
leading twist approximation was taken as a first estimate.
Despite the relative suppression factor α2em, this can be a
serious background at small t and large Q2. Fortunately,
there is no interference between the spin-dependent odd-
eron and the (leading) Primakoff amplitude because the
proton helicity flips in the former but not in the latter.
Therefore in principle one can subtract Eq. (28) from the
measured cross section. In practice some subleading
corrections to Eq. (28) or to the forward limit could
complicate this task. For larger values of t, the
Primakoff process should be negligible and one can probe
the three types of odderon GTMDs g1;1, g1;2, and g1;3.
However, the cross section formula in this region is rather
complicated.
Conclusions.—In this Letter, we have shown that

GTMDs provide a unified framework to treat the spin-
dependent and spin-independent Odderons on an equal
footing. The formula (8), which involves three independent
dipole gluon GTMDs, describes how the odderon couples
to generic spin-1=2 hadrons. While discussions of odderon-
hadron coupling are scattered in the literature, it has not
been previously presented in this most general, coherent
form. Of particular interest is the spin-dependent odderon
g1;2 which reduces to the gluon Sivers function in the
forward (TMD) limit [7]. We have demonstrated that this
function gives the dominant contribution to exclusive pion
production ep → e0π0p0 in the forward region t ≈ 0.
It would be very interesting to test our prediction at

existing and future ep colliders such as the EIC, and
especially, the LHeC where the target polarization is not
planned at the moment. The detection of events will be an
unambiguous signal of the much sought-after QCD odd-
eron, and at the same time, shed light on the magnitude of
the gluon Sivers effect which remains largely mysterious
to date.
A lot of progress has been made for one-loop corrections

to exclusive diffractive processes at small x [43–46]. In
particular, a similar computation to that of Ref. [45],
adapted from results of Ref. [44], would easily provide
the one-loop corrections to the process described in this
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Letter, furthering the precision for EIC and LHeC
predictions.
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