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We present the full form of a four-point correlation function of large BPS operators in planar N ¼ 4

supersymmetric Yang-Mills theory to any loop order. We do this by following a bootstrap philosophy based
on three simple axioms pertaining to (i) the space of functions arising at each loop order, (ii) the behavior in
the operator product expansion (OPE) in a double-trace dominated channel and (iii) the behavior under a
double null limit. We discuss how these bootstrap axioms are in turn strongly motivated by empirical
observations up to nine loops unveiled through integrability methods in our previous work [F. Coronado,
J. High Energy Phys. 01 (2019) 056.] on this simplest correlation function.

DOI: 10.1103/PhysRevLett.124.171601

Introduction.—Integrability methods have shaped a new
path for the explicit evaluation of correlators of local
operators in planar N ¼ 4 supersymmetric Yang-Mills
theory [1–5] and also nonplanar [6–8], especially for
four-point functions of large protected single-trace oper-
ators. In [9] we used integrability-based methods to find the
loop corrections to the polarized four-point function we
named as the simplest. This correlator consists of four
external protected operators with R-charge polarizations
chosen as shown in Fig. 1. In the limit of long operators
(K ≫ 1) [10], we argued that this four-point function
admits a factorization into the tree level part which carries
all the dependence on the external scaling dimension K and
the loop corrections which are given by the squared of the
function O (the octagon)
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where the cross ratios are defined in terms of the spacetime
positions as:
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In this Letter we present some of the analytic properties
of the octagon O which follow from the explicit nine-loop
results in [9]. These properties include a restriction on the

space of functions that appear at any loop order and the
remarkable simplicity of the octagon in two different
kinematical limits: the OPE limit ðz → 1; z̄ → 1Þ and the
double light-cone limit ðz → 0; z̄ → ∞Þ.
We also state that these three analytic properties can be

used to uniquely define the octagon and with that also the

FIG. 1. The simplest four-point function with external operators
O1ð0; 0Þ ¼ TrðZðK=2ÞX̄ðK=2ÞÞ þ cyclic permutations, O2ðz; z̄Þ ¼
TrðXKÞ, O3ð1;1Þ¼TrðZ̄KÞ, and O4ð∞;∞Þ ¼ TrðZðK=2ÞX̄ðK=2ÞÞþ
cyclic permutations. The Wick contractions form a perimeter
with four bridges of width K=2. According to hexagonalization
[3] in the limit K ≫ 1 the loop corrections are obtained by
summing over 2D intermediate multiparticle states ψ in and ψout
on mirror cuts 1-4 and 2-3 respectively, with both sums
evaluating to O. Alternatively the octagon O represents the
resummation of planar Feynman diagrams drawn inside (outside)
the perimeter.
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simplest correlator (1). We show how to solve this boot-
strap problem by first introducing a Steinmann basis of
ladders which resolve two of the aforementioned analytic
properties. Then using the third property to completely
fix the coefficients in an ansatz constructed with the
Steinmann basis.
Our approach is reminiscent of the bootstrap program to

constraint perturbative scattering amplitudes [11,12] and
Feynman integrals [13] using Steinmann relations. While
for off-shell correlators this relation is not a natural
assumption, our data indicates that the octagon function
O has a vanishing double discontinuity. In this Letter we
call this property a Steinmann relation, as in the S-matrix
context, although we associate its origin to the existence of
a OPE channel dominated by double-trace operators in our
simplest four-point function, see discussion below in a later
section.
Our bootstrap approach reproduces the explicit results

obtained from perturbation theory and integrability and
allows us to easily extend them to arbitrary loop order. We
accompany this Letter with an ancillary file [14] with our
explicit results up to 24 loops.
Analytic properties of octagon.—The following analytic

properties were observed up to nine loops from the explicit
results in [9]. These empirically found properties will later
be converted into bootstrap axioms and used to fully
determine our correlator. Some of these empirical obser-
vations can be a posteriori derived and better understood as
discussed in more detail in [15].
Single-valuedness and ladders: Our explicit results in [9]

provided the octagon [16] a multilinear combination of
ladder integrals:

O ¼ 1þ
X∞
n¼1

X∞
J¼n2

X
j⃗∈Zþ

n ðJÞ
g2J × dj⃗ × fj1 � � � fjn ; ð2Þ

where Zþ
n ðJÞ represents the group of sets of positive

integers j⃗≡fj1 ���jng which add up to j1 þ � � � þ jn ¼ J.
The rational coefficients dj⃗ are not known in closed form
and could be zero for some integer partitions. The basis of
conformal ladder integrals is given by [17]
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where v ¼ ð1 − zÞð1 − z̄Þ.
This expansion of O makes manifest its single-valued-

ness and its uniform maximal transcendentality at each
loop order.
Double-trace OPE channel: Here we consider the OPE

expansion in channel 2-3, see Fig. 1. Unlike the other two-
channels (1-2 and 2-4) [18], this one receives double-trace
contributions already at leading twist 2K.

This OPE limit corresponds to z → 1; z̄ → 1 (or
v → 0; u → 1). At weak coupling we find the behavior
of the octagon in this kinematics to be given by the
following (similar truncations have been observed in the
study of extremal three-point functions in [19]):

lim
z;z̄→1

Oðz; z̄Þ ¼ aðz; z̄; g2Þ þ bðz; z̄; g2Þ log v; ð3Þ

where both functions a and b have a series expansion in the
coupling g2 and the cross ratios (1 − z) and ð1 − z̄Þ.
In the limit of large operators where (1) holds up to

arbitrary loop order this octagon limit (3) implies that the
simplest four-point function has at most a log2 v singularity.
This type of truncations is expected in the planar limit for
OPE channels dominated by double-trace operators hence
we dub this channel as the double trace channel [15].
Null-square limit: This limit corresponds to the kinemat-

ics where the external operators become lightlike separated:
x212; x

2
24; x

2
34; x

2
13 → 0 forming a null square. This limit of

the four-point function was considered in [20] for smaller
operators where a relationship between null correlators and
null polygonal Wilson loops was established.
For our simplest four-point function, see (1), the non-

trivial part of this null limit is given by the limit of the
octagon [21]

lim
z→0;z̄→∞

logOðz; z̄Þ

¼ −Γ̃ðgÞlog2ðz=z̄Þ þ 1

2
g2ðlog2ð−zÞ þ log2ð−1=z̄ÞÞ;

ð4Þ

where the coefficient Γ̃ admits an expansion in the
coupling

Γ̃ðgÞ ¼ 1

2
g2 −

1

6
π2g4 þ 8

45
π4g6 −

68

315
π6g8 þOðgÞ10:

To appreciate better the simplicity of (4) we contrast it
against the result for short operators, K ¼ 2. For the case
K ¼ 2 the coefficient Γ̃ is replaced by the cusp anomalous
dimension Γcusp which is associated to the energy density of
the flux tube between theWilson lines. It also appears in the
anomalous dimension of the large spin leading twist-
operator TrðZDSZÞ dominating the light-cone OPE

Δ ¼ Sþ 2þ ΓcuspðgÞ logSþOð1=SÞ:

For our simplest correlator the operator(s) dominating the
light-cone OPE is of the form TrðZðK=2ÞDSXðK=2ÞÞ.
Furthermore the limit K ≫ 1 implies a huge number of
nearly degenerate operators at leading twist K. It would be
interesting to analyze how these two latter considerations
account for the difference between Γ̃ and Γcusp. In particular
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the latter contains odd zeta numbers while the former only
even zeta numbers.
In (4) the exponents of logð−zÞ and logð−1=z̄Þ truncate

at degree two while for the case K ¼ 2 there is an extra
complicated function of the cross ratios determined in [22]
which accounts for the backreaction of the flux-tube on the
heavy particle that propagates along the null square,
see [20].
We expect these differences can be explained following

an analysis similar to [22,23] including the nontrivial R
charge and large K ≫ 1 limit of our simplest correlator
[15]. It would also be interesting to see if Γ̃ satisfies a linear
integral equation as is the case for Γcusp [24,25].
Bootstrapping the octagon.—We now postulate that the

analytic properties described in the previous section are
valid at all loops and can be used to define a bootstrap
problem by means of three axioms. (i) Ladder integrals:
these span the family of functions that appear in the loop
corrections of the correlator. They appear in multilinear
combinations with uniform maximal transcendentality at
any loop order. (ii) Steinmann relations: the octagon satisfy
these relations which establish the vanishing of its double
discontinuity

Disc1Disc1Oðz; z̄Þ ¼ 0; ð5Þ

where Disc1 denotes the discontinuity after performing the
analytic continuation ð1 − zÞ → ð1 − zÞeiπ and ð1 − z̄Þ →
ð1 − z̄Þeiπ . This condition guarantees the truncation to
log v in the OPE expansion z → 1; z̄ → 1 at weak coupling.
(iii) Light-cone asymptotics: in the null-square limit z → 0
and z → ∞ we demand a simple asymptotics of the
logarithm of the octagon:

lim
z→0;z̄→∞

logOðz; z̄Þ ¼ a0;0 þ a1;0 logð−zÞ þ a0;1 logð−1=z̄Þ

þ a1;1 logð−zÞ logð−1=z̄Þ
þ a2;0log2ð−zÞ þ a0;2log2ð−1=z̄Þ;

ð6Þ

where the relevant condition is the absence of higher logs
and we do not impose any conditions on the coeffi-
cients ai;j.
In the following sections we show how to resolve these

three conditions to determine the octagon and the simplest
four-point function at any loop order.
A Steinmann basis of ladder integrals: The vanishing of

the double discontinuity (ii) motivates the search for a basis
of functions that satisfy this property. Here we combine (i)
and (ii) to look for this basis of functions in the space of
ladder integrals. We start with an ansatz of the form

Sðm;nÞ
i ¼

X
k1þ���þkn¼m

dðiÞk1;…;kn
fk1 � � � fkn ð7Þ

With this ansatz we are assuming an organization of our
Steinmann basis into families Sðm;nÞ whose elements have
uniform transcendentality of order m and are constructed
with n ladders. We are provisionally using the subindex i to

label the different elements Sðm;nÞ
i on each family.

In order to find our basis we simply need to take into
account the discontinuities of the ladders:

Disc1fðnÞðz; z̄Þ ∼ 2πi½logðzz̄Þ�n−1 log
�
z
z̄

�

Disc1Disc1fðnÞðz; z̄Þ ¼ 0;

then imposing the Steinmann relations

Disc1Disc1S
ðm;nÞ
i ¼ 0; ð8Þ

we solve for the coefficients d in the ansatz (7).
This exercise was performed in [13] where some

solutions to (8) were presented and identified with fishnet
Feynman integrals. Here we will provide all solutions but
without a Feynman integral interpretation.
We solved equation (8) finding the coefficients dðiÞk1���kn for

all m ≤ 26, n ≤ 5 and observe the following properties of
the solutions: form < n2 there are no solutions, form ¼ n2

andm ¼ n2 þ 1 there is only one solution, and all solutions
we found admit determinant representations.
This experience allows us to propose a Steinmann basis

of ladders in the form of determinants. In short, the
elements of our Steinmann basis can be identified with
the minors of the infinite dimensional matrix0

BBBBB@

f1 f2 f3 � � �
f2 f3 � � � � � �
f3 � � � � � � � � �
..
. � � � � � � � � �

1
CCCCCA;

more specifically we label these minors as

Mi1;i2;…;in ¼

�����������

fi1 fi2−1 � � � fin−nþ1

fi1þ1 fi2 � � � fin−nþ2

..

. ..
. . .

. ..
.

fi1þn−1 fi2þn−2 … fin

�����������
; ð9Þ

where the subindexes on Mi1;i2;…;in correspond to the
elements on the diagonal and the subindexes on the first
row of the matrix must satisfy

0 < i1 < i2 − 1 < � � � < in − nþ 1:

Using these minors we define our Steinmann basis of
ladders as:

Sk1���kn ¼
�Yn
o¼1

pko

�
Mk1���kn ; ð10Þ
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where the rescaling pk ¼ f1=½k!ðk − 1Þ!�g is just per-
formed for later convenience. The families Sðm;nÞ are
spanned as follows

Sk1;…;kn ∈ Sðm;nÞ if k1 þ � � � þ kn ¼ m:

Lastly, considering the property of maximal transcedental-
ity and assuming our Steinmann basis Sðm;nÞ is complete
(we have checked this basis is complete for all m ≤ 26,
n ≤ 5 and assume it is also the case for arbitrary m, n), we
build an ansatz for each loop order of a function O
satisfying (i) and (ii)

O ¼ 1þ
X∞
n¼1

X∞
m¼n2

ðg2Þm
X

S∈Sðm;nÞ
ck1���knSk1���kn : ð11Þ

Fixing all coefficients with light-cone asymptotics: In order
to fix the coefficients ck1;…;kn in the ansatz we impose the
third analytic property (iii). This condition of exponentia-
tion in the null-square limit allows us to relate coefficients
of high loop orders to the ones at lower loops. To take this
limit in our ansatz we simply need to consider the light-
cone limit of the ladders

lim
z→0;z̄→∞

fjðz; z̄Þ¼
Xj

m¼0

Xj

n¼0

bðjÞm;nlogmð−zÞlognð−1=z̄Þ; ð12Þ

where bm;n ¼ 0 if mþ n is odd or otherwise:

bðjÞm;n ¼ j!ðj − 1Þ!ð2 − 2mþn−2jþ2Þð2j −m − nÞ!
ð−1Þm!n!ðj −mÞ!ðj − nÞ! ζ2j−m−n:

Notice that the light-cone ladder in (12) is manifestly
symmetric under the exchange of cross ratios z ↔ −1=z̄
and our ansatz of ladders directly inherits this feature.
We then enforce the condition of truncation of the

exponents of logðzÞ and logð−1=z̄Þ up to degree two.
This provides a set of equations which can be easily solved
at each loop order. Up to four loops the solution is:

c2 ¼ −2c21; c3 ¼ 6c31; c4 ¼ −20c41; c1;3 ¼ c41:

In principle, this set of equations could have left some
coefficients undetermined or it could have been an over-
determined system with no solution. Remarkably, going to
higher loop orders we find that by imposing (iii) all
coefficients c in the ansatz (11) are fixed in terms of the
single one-loop coefficient c1. This latter can be associated
to the definition of the coupling g2 and in order to match
with the conventions in the literature we set it to c1 ¼ 1. We
have performed this exercise up to 24 loops and consider it
gives strong support of our conjecture that properties (i),
(ii), and (iii) uniquely define the octagon O and with that
our simplest correlator (1) at arbitrary loop order.

Furthermore, we have been able to identify the analytic
form of an infinite family of coefficients:

c1; 3…2n − 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

;2nþ1þm ¼
�
2mþ 4n

m

�
; with m ≥ 0:

In particular the coefficients c1;3;5…2n−1 ¼ 1 of the note-
worthy elements of our basis S1;3;5…2n−1 which have been
identified in [13] as the fishnet Feynman integrals,
see Fig. 2.
It is interesting to ask whether other elements of the

Steinmann basis of ladders or perhaps linear combinations
of them can be identified with other families of Feynman
integrals. Finding such identification could be the guiding
principle to find the closed form of all coefficients of our
(possibly rotated) Steinmann basis. Then all would be set to
attempt a resummation and get access to the finite or strong
coupling limit. This is a question we hope to address in the
future.
Conclusion.—In this short Letter, we have bootstrapped,

for the first time in a unitary 4D planar gauge theory,
a four-point correlator at all loops in the ’t Hooft coupling.
This is a correlator of four long protected operators and we
call it the simplest due to the simplicity of the analytic
properties that define it. These properties, see (i) and (ii),
constrain the space of functions of the loop corrections to a
reduced Steinmann basis of ladders with determinant
representations. The coefficients on this basis are then
fully determined by imposing a simple exponentiation in
the light-cone limit, see (iii).
An interesting next step is to consider other kinematical

limits of our results. We will be reporting our findings in
[15], as well as a more thorough study of the analytic
properties presented here and their physical implications.
It would also be interesting to find other higher-point

correlation functions that satisfy a version of Steinmann
relations. If they exist, finding a basis similar to (10) or the
Steinmann functions that appear in the context of the S
matrix [11,12], would be of relevance to find the loop
corrections of these correlators. A natural candidate would

FIG. 2. Fishnet identified with S1;3…2n−1
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be the six-point correlation function proposed in [9], see
Fig. 17 therein.
We also consider important to understand which boot-

strap conditions we should include to address the case of
generic R-charge polarizations and ultimately operators
with arbitrary or short scaling dimensions. At weak cou-
pling there is a vast list of results, obtained using bootstrap
ideas, for the integrands of these correlators [26–31].
It would be nice to be able to go from the integrand to
explicit functions as the ones presented in this Letter.
Recently, bootstrap methods in Mellin space [32,33] and

the analytic conformal bootstrap [34–37] have proved
fruitful at strong coupling. It would be worthy exploring
if these methods can be complemented with bootstrap ideas
similar to the ones presented here to get more results
starting in the regime of long operators.
Finally, it would be also interesting to see if the

remarkable analytic properties of the simplest correlator
also appear in observables of the nonunitary Fishnet theory
[38] for which exact correlators have recently been com-
puted [39].
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