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In an ongoing effort to explore quantum effects on the interior geometry of black holes, we explicitly
compute the semiclassical flux components hTuuiren and hTvviren (u and v being the standard Eddington
coordinates) of the renormalized stress-energy tensor for a minimally coupled massless quantum scalar field,
in the vicinity of the inner horizon (IH) of a Reissner-Nordström black hole. These two flux components seem
to dominate the effect of backreaction in the IH vicinity, and furthermore, their regularization procedure
reveals remarkable simplicity. We consider the Hartle-Hawking and Unruh quantum states, the latter
corresponding to an evaporating black hole. In both quantum states, we compute hTuuiren and hTvviren in the
IH vicinity for a wide range of Q=M values. We find that both hTuuiren and hTvviren attain finite asymptotic
values at the IH. Depending on Q=M, these asymptotic values are found to be either positive or negative
(or vanishing in between). Note that having a nonvanishing hTvviren at the IH implies the formation of a
curvature singularity on its ingoing section, the Cauchy horizon. Motivated by these findings, we also take
initial steps in the exploration of the backreaction effect of these semiclassical fluxes on the near-IH geometry.
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Introduction.—The analytically extended Kerr and
Reissner-Nordström (RN) metrics, describing, respectively,
spinning and spherical charged isolated black holes (BHs),
reveal a traversable passage through an inner horizon (IH)
to another external universe [1,2].
Consider a traveler intending to access this other uni-

verse. To do so, she must pass through the BH interior, and
in particular, through the IH. What will she encounter along
her way? Is her mission doomed to fail? Does this external
universe actually exist? Answering these questions requires
understanding how quantum fields change the internal
geometry of BHs. The most renowned phenomenon in
which quantum effects profoundly transform the classical
spacetime picture is the process of BH evaporation due to
Hawking radiation [3,4]. In fact, already at the classical
level, it was demonstrated that introducing matter (or
perturbation) fields on BH backgrounds may affect their
regularity. A notable example is the null weak [5] curvature
singularity that forms along the Cauchy horizon (CH, the
IH ingoing section) in both spinning [6–9] and spherical
charged [10–16] BHs. The analogous effect of quantum
perturbations is often expected to be significantly stronger
[17–19], but this issue remains inconclusive, making it the
main motivation for this work.
A theoretical framework that lends itself to this problem

is the semiclassical formulation of general relativity, con-
sidering matter fields as quantum fields propagating in a
classical curved spacetime, obeying the semiclassical
Einstein field equation, given (in units G ¼ c ¼ 1) by

Gαβ ¼ 8πhTαβiren: ð1Þ

Here,Gαβ is the Einstein tensor, and the source term hTαβiren
is the renormalized expectation value of the stress-energy
tensor (RSET) associated with the quantum field. Note the
emergent requirement for self-consistency: spacetime cur-
vature induces a nontrivial stress energy in the quantum
fields which, in turn, deforms the spacetime metric—an
effect known as backreaction. A possible way to handle this
complexity is to break the problem into steps of increasing
order in the mutual effect, initially computing hTαβiren for a
fixed, classical background metric. But already at this level,
one faces a serious challenge: the computation of the RSET
on curved backgrounds.
Recall that, already in flat spacetime, the stress-energy

tensor of a quantum field formally diverges, but this is
usually handled through the normal-ordering scheme,
which is ill defined in curved spacetime. The intricate
regularization procedure required in curved spacetime,
along with its inevitable numerical implementation, has
made this computation a decades-lasting hurdle in the study
of semiclassical problems. However, the recently devel-
oped pragmatic mode-sum regularization (PMR) method
[20–23], rooted in covariant point splitting [24,25], has
made this task more accessible. (See, however, earlier
works employing other methods, e.g., [26–39]).
The PMR method overcomes the main difficulty in the

numerical implementation of point splitting by treating the
coincidence limit analytically, through construction of
“modewise” counter terms. It has been successfully used
in recent years to compute both the vacuum expectation
value hΦ2iren and the RSET for a quantum scalar field Φ
on various BH exteriors [20–23,40]. On BH interiors,
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however, only hΦ2iren has been computed in that method so
far (initially for Schwarzschild [41], reproducing previous
results [32]). Although hΦ2iren is not the quantity most
relevant for backreaction, nevertheless, it provides valuable
insights for the computation of the more divergent RSET.
In particular, in a recent paper [42], hΦ2iren was inves-
tigated both numerically and analytically inside RN, with
extensive study of the IH vicinity. The RSET trace (for a
minimally coupled scalar field) was consequently found to
diverge at the IH. This Letter continues previous work,
providing novel results for certain key components of
the RSET inside a BH—which directly demonstrate the
divergence of semiclassical energy-momentum fluxes at
the CH. [43].
We hereby consider a spherically symmetric charged

BH, whose geometry is described by the RN metric

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2;

where dΩ2¼dθ2þsin2θdφ2, and fðrÞ≡1–2M=rþQ2=r2

with mass M and charge Q. We consider a nonextremal
BH, with 0 < Q=M < 1. The event horizon (EH) and
the IH are located at r ¼ rþ and r ¼ r−, respectively,

with r� ≡M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. For later use, we define the

two surface gravity parameters, κ� ¼ ðrþ − r−Þ=2r2�.
Upon this background, we introduce an (uncharged)

minimally coupled massless scalar quantum field ΦðxÞ,
obeying the (covariant) d’Alembertian equation, □Φ ¼ 0.
We decompose the field into modes, which, owing to the
metric symmetries, may be separated into e−iωt, spherical
harmonics Ylmðθ;φÞ, and a function of r [44]. The latter is
encoded in the radial function ψωlðrÞ, satisfying

d2ψωl

dr2�
þ ½ω2 − VlðrÞ�ψωl ¼ 0; ð2Þ

with the effective potential

VlðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ df=dr

r

�
: ð3Þ

r� is the standard tortoise coordinate defined through
dr=dr� ¼ fðrÞ, varying from r� → −∞ at the EH to
r� → ∞ at the IH.
In the BH interior, fðrÞ < 0, meaning the coordinate r is

now timelike. Then, assuming a free incoming wave at the
EH, Eq. (2) is endowed with the initial condition

ψωl ≅ e−iωr� ; r� → −∞: ð4Þ

We consider our field in two quantum states: the Hartle-
Hawking (HH) state [45,46], corresponding to a BH in
thermal equilibrium, and the more physically realistic
Unruh state [47], describing an evaporating BH.

We introduce the null Eddington coordinates inside the
BH, u ¼ r� − t and v ¼ r� þ t. The flux components of the
RSET, hTuuiren and hTvviren, are of particular interest [48].
The reason is threefold. First and foremost, as we shall see,
it is these components that seem to be the most significant
for backreaction near the CH, with a remarkable accumu-
lating effect on the form of the metric (as opposed to minor
local distortions associated with other RSET components).
In addition, note that, although the classical RN back-
ground contains a nonzero stress-energy tensor (of the
sourceless electromagnetic field), its Tuu and Tvv compo-
nents vanish identically, leaving quantum contributions to
prevail. Finally, their regularization procedure turns out to
be especially manageable. Accordingly, aiming for the
“heart” of the RSET in the context of backreaction, this
work focuses on the flux components hTuuiren and hTvviren
in the IH vicinity.
In the next section, we implement the PMR θ-splitting

variant [21,49] to obtain expressions for the renormalized
semiclassical flux components in both quantum states,
revealing notable simplicity when taking the IH limit.
Then, we provide numerical results for various Q=M
values, noting various issues that arise. Finally, we present
a preliminary analysis of backreaction and implications to
the fate of our traveler.
Developing the near-IH flux expressions.—In what

follows, indices U and H correspond to the Unruh and
HH states, respectively. As mentioned, we shall only
consider the two flux components hTuuiren and hTvviren,
and for their uniform treatment, we introduce the symbol y,
representing either u or v.
The basic PMR expression for the trace-reversed RSET

is given in Eq. (2.6) of Ref. [23]. In the case of interest (i.e.,
the flux components hTyyiren evaluated at r → r− using
θ-splitting), two remarkable simplifications occur: (i) the
PMR counterterm L̃yyðx; x0Þ vanishes [49,50]; and (ii) since
gyy ¼ 0, Tyy coincides with its trace-reversed counterpart.
The expression then simplifies to

hTyyirenðxÞ ¼
1

2
lim
x0→x

Gð1Þðx; x0Þ;yy0 ; ð5Þ

where Gð1Þðx; x0Þ ¼ hfΦðxÞ;Φðx0Þgi, and fpðxÞ; qðx0Þg
denotes pðxÞqðx0Þþpðx0ÞqðxÞ. We can also expressGð1Þ as

Gð1Þðx; x0Þ ¼ ℏ
X

l;m

Z
∞

0

dωEωlmðx; x0Þ; ð6Þ

where the mode contributions Eωlmðx; x0Þ inside a RN BH,
in the HH state, are given by

EH
ωlmðx; x0Þ ¼ coth ω̃½JR þ JL þ ðcosh ω̃Þ−1JRL�;

[cf. Eq. (4.3) in [44] ] where
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JR ¼ ffRωlmðxÞ; fR�ωlmðx0Þg; JL ¼ ffLωlmðxÞ; fL�ωlmðx0Þg;

and

JRL ¼ 2ℜ½ρupωlffRωlmðxÞ; fL�ð−ωÞlmðx0Þg�:

Here, ω̃≡ πω=κþ, the star denotes complex conjugation,
and ℜ marks the real part. Hereafter, ρupωl ðτupωlÞ represents
the reflection (transmission) coefficient for the “up”
modes outside the BH [44]. The mode functions fR;LωlmðxÞ
are given by

fR;LωlmðxÞ ¼
1

r
ffiffiffiffiffiffiffiffiffiffiffi
4πjωjp Ylmðθ;φÞf̃R;Lωl ðt; rÞ;

where f̃Rωl ¼ e−iωtψωlðrÞ and f̃Lωl ¼ eiωtψωlðrÞ, and ψωlðrÞ
is the aforementioned radial function solving Eq. (2) with
the initial condition (4). (For more details, see [44].)
A similar expression exists for the Unruh-state counter-

part, EU
ωlm. In what follows, we shall describe the analysis

for the HH state solely. For the Unruh state, the analysis is
similar, and we shall merely quote final results below (with
the more detailed derivation deferred to [50]). Note that,
due to time-inversion symmetry of the HH state (unlike the
Unruh state), hTuuiHren ¼ hTvviHren everywhere.
We are interested in the asymptotic behavior at the

IH, where the effective potential VlðrÞ vanishes like
f ∝ r − r−. Hence, the radial equation, Eq. (2) for ψωl

admits the general asymptotic solution Aωleiωr� þ
Bωle−iωr� (with constant coefficients Aωl; Bωl), which, in
turn, implies

f̃Rωl ≅ Aωleiωu þ Bωle−iωv; f̃Lωl ≅ Aωleiωv þ Bωle−iωu:

ð7Þ
Equations (5), (6) yield

hTyyiHrenðxÞ ¼
ℏ
2
lim
x0→x

X

l;m

Z
∞

0

dωEH
ωlmðx; x0Þ;yy0 :

It is interesting to inspect EH
ωlmðx; x0Þ;yy0 within the near-IH

approximation (7). Consider, for example, the contribution
coming from the JR term. Focusing for concreteness on
y ¼ u, we readily see that the ∂uu0 operator annihilates the
terms depending on v in Eq. (7). Also, r;u ¼ f=2 ∝ r − r−
vanishes at r → r−, altogether yielding at the limit
ðu0; v0;φ0Þ → ðu; v;φÞ (corresponding to θ splitting) and
r → r−

JR;uu0 → fYlmðθ;φÞ; Y�
lmðθ0;φÞgjAωlj2: ð8Þ

Remarkably, although JR itself does contain terms like
∝ eiωðvþuÞ ¼ e2iωr� at the IH limit, JR;uu0 is free of such
oscillatory terms—and is, in fact, entirely independent of r�

(and t). This simplification occurs for all three “J” terms in
the expression for EH

ωlmðx; x0Þ;uu0. Combining their contri-
butions and summing over m, one readily obtains at the IH

hTuuiHren ¼ ℏ lim
δθ→0

X∞

l¼0

2lþ 1

8π
Plðcos δθÞFH

l ; ð9Þ

where δθ≡ θ0 − θ, and FH
l ≡ R

∞
0 dω ÊH

ωl where

ÊH
ωl ¼

ω coth ω̃
πr2−

½jAωlj2 þ cosh−1ω̃ℜðρupωlAωlBωlÞ�; ð10Þ

(see fuller derivation in [50]).
The sequence FH

l appearing in Eq. (9) approaches a
nonvanishing constant β≡ FH

l→∞. One can show [50],
analytically, that β¼ðκ2−−κ2þÞ=24πr2−. Taking the δθ→0

limit (using the methods of Ref. [21]; see, also, [50]), we
obtain the final result

hT−
uuiHren ¼ hT−

vviHren ¼ ℏ
X∞

l¼0

2lþ 1

8π
ðFH

l − βÞ: ð11Þ

Here, the upper “−” index indicates the IH limit.
The analogous Unruh-state expression is [50]

hT−
yyiUren ¼ hT−

yyiHren þ ℏ
X∞

l¼0

2lþ 1

8π
ΔFU

lðyyÞ; ð12Þ

where ΔFU
lðyyÞ ≡

R
∞
0 dωΔÊU

ωlðyyÞ and

ΔÊU
ωlðyyÞ ¼

ω

2πr2−
ð1 − coth ω̃Þjτupωlj2ðjAωlj2 þ δvyÞ: ð13Þ

Note that the two Unruh-state flux components are not
independent: From energy-momentum conservation,
4πr2ðhTuuðxÞiUren − hTvvðxÞiUrenÞ is constant (it is actually
the Hawking outflux; see [50]).
Numerical results.—Recalling the Wronskian relation

jτupωlj2 ¼ 1 − jρupωlj2, the final expressions (11), (12) for the
near-IH fluxes in both quantum states reveal simple
dependence on Aωl; Bωl and ρupωl. We numerically compute
Aωl and Bωl by integrating the radial Eq. (2) from rþ to r−
(and ρupωl likewise, by solving the radial equation outside the
BH). Then, we compute the three flux quantities hT−

yyiren
(that is, hT−

yyiHren; hT−
uuiUren, and hT−

vviUren) at the IH, as
prescribed in Eqs. (11), (12). For further numerical details,
see [50]. We find exponential convergence of both the
integral over ω (entailed in FH

l , ΔFU
l ) and the sum over l,

for all three quantities hT−
yyiren, as they attain well-defined

finite values. Note that a finite nonvanishing hT−
vviren

implies a curvature singularity at the CH, since trans-
forming to a regular Kruskal-like coordinate V ¼ −e−κ−v
yields hT−

VViren ∝ e2κ−v → ∞.
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Remarkably, the three quantities hT−
yyiren may be either

positive or negative, depending on Q=M. We find that,
sufficiently close to extremality, all three flux components
become negative, whereas further away from extremality,
they are all positive. Whether the diverging hT−

VVi is
positive or negative is crucial for the nature of tidal
deformation (contraction vs expansion), a point expanded,
hereafter. Figure 1 displays the three flux quantities hT−

yyiren
in the range 0.96 < Q=M < 1, exhibiting the transition
from positive to negative values at around Q=M ∼ 0.97.
More precisely, the sign change occurs at Q=M values
of qUv ≅ 0.9650; qUu ≅ 0.9671, and qHy ≅ 0.9675 for
hT−

vviUren; hT−
uuiUren, and hT−

yyiHren, respectively.
Figure 2 displays the three flux quantities in a wider

range 0.1 ≤ Q=M < 1. Note the very rapid increase in the
fluxes as Q=M decreases. This is, perhaps, not too
surprising, since a decrease in Q=M implies an (even
faster) decrease in r−=M and, correspondingly, an increas-
ing curvature at the IH.
Another notable feature is the decay of the fluxes as

Q=M → 1. Remarkably, in the near-extremal domain
(characterized by jQ=M − 1j ≪ 1), the flux computation
lends itself to analytical treatment (which we defer to a
future paper [54]), leading to excellent agreement with the
numerical data illustrated on the rightmost part of Fig. 1.
Backreaction near the CH.—The semiclassical back-

reaction, being of order ∝ ℏ=M2 ¼ ðmp=MÞ2 (where mp

denotes the Planck mass), is basically an extremely weak
effect for macroscopic BHs. For instance, for astrophysical
BHs, it is typically < 10−75. However, these effects
accumulate along the EH, causing its area to drastically
shrink upon evaporation. Likewise, as we shall shortly see,
semiclassical effects may also accumulate near the CH (and
in addition, they become singular there). Thus, semiclass-
ical backreaction is presumably negligible—and hence, the
actual backreacted geometry should be well approximated
by the original RN metric—as long as (i) the BH hasn’t had
the chance yet to significantly evaporate (that is, the v
interval since the BH formation is much smaller than the

evaporation timescale), and (ii) we are not too close to
the CH.
To address backreaction, we write the general spheri-

cally symmetric metric in double-null coordinates as
−eσdudvþ r2dΩ2. The two unknown metric functions,
rðu; vÞ and σðu; vÞ, are to be determined from the semi-
classical Einstein equation, Eq. (1). This system contains
constraint equations, which are two independent ordinary
differential equations (ODEs) (one along each null direc-
tion) that involve the flux components hT−

yyiren only; and
evolution equations, which are two coupled partial differ-
ential equations involving hTuviren and hTθθiren. Our
analysis will mainly rely on the two constraint equations,
which we write uniformly as

r;yy − r;yσ;y ¼ −4πrhTyyiren: ð14Þ

Now, to proceed, we shall restrict the analysis to the
weak-backreaction domain, in which r; σ;y, and hTyyiren
(but not necessarily r;y) are still well approximated by their
original RN background values. [55] Correspondingly,
in what follows, we consider the RN-background RSET
and explore its backreaction effect via the semiclassical
Einstein equation.
Furthermore, we shall focus on the near-CH portion of

this weak-backreaction domain [56]. In this region, we may
replace the right hand side of Eq. (14) by the constant
−4πr−hT−

yyiren, and σ;y by −κ− (its near-CH value in RN).
We obtain a trivial linear ODE for r;y, which is easily
solved. After an exponentially decaying term (∝ eσ) is
dropped, we are left with

r;y ≅ −4πðr−=κ−ÞhT−
yyiren: ð15Þ

This result expresses a small but steady asymptotic
drift of rðu; vÞ in both null directions. In the long run
(i.e., at sufficiently large u and/or v), this drift would result in
a major deviation of r from its RN value—which would
eventually lead us away from theweak-backreaction domain.

FIG. 1. hT−
yyiren (namely hT−

uuiUren; hT−
vviUren, and hT−

uuiHren ¼
hT−

vviHren) as a function of Q=M. The points correspond to the
numerical data, while the solid curve is interpolated.

FIG. 2. log10 jhT−
yyiren=ℏM−4j for a wider Q=M range. The

steep drop at ∼0.97 corresponds to the fluxes changing sign. Note
that, in most Q=M values, the three quantities are indistinguish-
able here.
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From Eq. (15), it becomes clear that this remarkable
accumulative effect is dictated solely by the flux compo-
nents, namely, it is independent of the other RSET
components.
To discuss the physical implications of this result, let us

assume our infalling traveler moves towards the IH ingoing
section and approaches the near-IH domain where the
semiclassical drift is present. Now, we shall consider the
effect of the drift in the v direction [57]. We emphasize that,
although the near-CH drift in r is very “slow” in terms of v
(i.e., r;v ≪ 1), it actually happens at an exceedingly fast
rate for our infalling traveler—which (in the fiducial RN
geometry) would arrive the CH at a finite proper time [58].
The nature of this physical effect may crucially depend on
the sign of hT−

vviren—and hence, on the value of Q=M.
For Q=M < qU;H

v , hT−
vviren > 0, and correspondingly, our

traveler will undergo sudden contraction. However, for
Q=M > qU;H

v , hT−
vviren is negative—implying an abrupt

expansion.
This analysis still needs to be extended to the domain of

strong backreaction, which actually entails two types of
extensions: (i) to the domain of very late time (i.e., very
large v), in which significant evaporation has already
occurred [59], and (ii) to the region very close to the CH.
Discussion.—Motivated by long-standing expectations

that semiclassical effects may drastically influence the
interior geometry of spinning or charged BHs, this work
focused on the RSET flux components (for a minimally
coupled massless scalar field), in the IH vicinity, on a fixed
RN background. We presented novel results for the flux
components in the Unruh and HH states for various Q=M
values. Both flux components hTuuiren and hTvviren—in
both quantum states—exhibit finite asymptotic values at
the IH. Recall, however, that a nonvanishing finite hTvviren
implies unbounded curvature (and unbounded tidal force)
at the CH (v → ∞), because the corresponding Kruskal-
like component hTVViren then diverges as e2κ−v.
Hiscock [18] previously demonstrated that, in the Unruh

state in a Kerr-Newman BH, either hT−
uuiren or hT−

vviren (or
possibly both) are nonvanishing—indicating that the cor-
responding Kruskal fluxes diverge on at least one of the two
IH sections. Still, this result left the semiclassical CH
singularity inconclusive: Note that it is exclusively the
ingoing section of the IH which maintains the causal and
physical role of a CH in an astrophysical BH. [60] Our
results show that both hT−

uuiren and hT−
vviren are generically

nonvanishing—demonstrating for the first time the diver-
gence of the Kruskal flux component hTVViren ∝ e2κ−v at
the CH.
It is also worth comparing the semiclassical RSET

divergence ∝ e2κ−v found here with its classical counter-
part. Classical perturbations are known to give rise to
curvature divergence at the CH, typically like v−ne2κ−v

(with n a positive integer depending on the type of
perturbation) [10,12,61]. In this sense, the aforementioned

semiclassical divergence at the CH is stronger than the one
associated with classical perturbations.
Our numerical results indicate that all flux components

change their signs at around Q=M ∼ 0.97, being negative
for larger Q=M and positive (and typically much larger) for
smaller Q=M values. The sign may have crucial implica-
tions to the nature of the tidal effect: catastrophic con-
traction (for hT−

vviren > 0) vs expansion (for hT−
vviren < 0).

We also made initial steps towards analyzing the semi-
classical backreaction effects of the fluxes on the near-CH
geometry (in both the Unruh and HH states). The result
expressed in Eq. (15) hints for drastic deformation of the
area coordinate r on approaching the CH. However, the
analysis provided here was rather preliminary. It should
be extended, as mentioned, beyond the domain of weak
backreaction. In particular, this picture may change in the
next iteration, in which the RSET is reevaluated with
respect to the backreacted geometry.
Other obvious extensions are in order. First, it would be

worthwhile to generalize the analysis to all RSET compo-
nents and, also, to the entire interior domain r− < r < rþ.
More importantly, this investigation should be extended
from the scalar to the more realistic electromagnetic
quantum field—and in addition, from the spherical RN
background to the astrophysically much more relevant
background of a spinning BH.
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