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We investigate the statistics of the work performed during a quench across a quantum phase transition
using the adiabatic perturbation theory when the system is characterized by independent quasiparticles and
the “single-excitation” approximation is assumed. It is shown that all the cumulants of work exhibit
universal scaling behavior analogous to the Kibble-Zurek scaling for the average density of defects. Two
kinds of transformations are considered: quenches between two gapped phases in which a critical point is
traversed, and quenches that end near the critical point. In contrast to the scaling behavior of the density of
defects, the scaling behavior of the cumulants of work are shown to be qualitatively different for these two
kinds of quenches. However, in both cases the corresponding exponents are fully determined by the
dimension of the system and the critical exponents of the transition, as in the traditional Kibble-Zurek
mechanism (KZM). Thus, our study deepens our understanding about the nonequilibrium dynamics of a
quantum phase transition by revealing the imprint of the KZM on the work statistics.

DOI: 10.1103/PhysRevLett.124.170603

Introduction.—In cosmology and condensed matter
physics the creation of excitations during continuous
phase transitions (thermal or quantum) is usually des-
cribed by the Kibble-Zurek mechanism (KZM) [1–4]. The
KZM relates the average density hnexi of excitations or
defects created during a transformation or quench across a
critical point to the rate or speed at which the critical
region is traversed. This is particularly relevant for
adiabatic quantum computation and simulation schemes,
where nonadiabatic effects impose a tradeoff between the
speed and the fidelity that can be achieved [5–7].
Importantly, the KZM predicts a universal power law
dependence of hnexi on this rate, with an exponent that is
fully determined by the dimension of the system and the
critical exponents of the transition. Also, the Kibble-
Zurek scaling of the irreversible entropy production has
been reported [8]. The traditional heuristic argument
behind the KZM, as well as more rigorous derivations
based on the adiabatic perturbation theory [9–11], only
gives information about the average density of excitations
hnexi. However, the actual number of excitations created
during a particular realization of the quench is a stochastic
quantity that will fluctuate from one realization to the
next, and thus must be characterized by a probability
distribution. It was recently shown by del Campo that in
the exactly solvable one dimensional (1D) transverse Ising
chain the universal scaling predicted by the KZM also
applies to all the cumulants of nex [12], which was
recently verified in experiments [13].

Motivated by this finding, we extend previous results in
two important aspects. In the first place, we turn our
attention away from the density of created excitations and
focus instead on the amount of work applied during the
quench. Thus, we investigate what are the signatures of
the KZM on the characteristic function of work (CFW),
which plays an important role in the newly developed field
of stochastic thermodynamics [14–16]. In analogy to the
partition function, which contains essential information
about an equilibrium state, the CFW contains essential
information about an arbitrary nonequilibrium process.
This interesting quantity has received much attention since
it allows us to understand the emergence of irreversibility
during a thermodynamic transformation (via the fluctua-
tion relations [17,18]), and is related to other interesting
quantities employed to study the nonequilibrium dynamics
of complex many-body systems like the Loschmidt echo
[18–22]. Second, we provide a general scaling argument,
underpinned by the well-known results in the adiabatic
perturbation theory [9–11], showing that all the cumulants
of the work exhibit a scaling behavior similar to the KZM
scaling for systems that can be described in terms of
independent quasiparticles. Our predictions are valid in
principle for systems in arbitrary dimensions, and are
explicitly shown to hold in the exactly solvable 1D
quantum transverse Ising model.
KZM and the adiabatic perturbation theory.—We first

briefly review the basic concepts and heuristic arguments
behind the KZM scaling in a quantum phase transition, and
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also how to recover (and generalize) the same results using
the adiabatic perturbation theory. We consider a second-
order quantum phase transition between two gapped phases
characterized by the correlation length critical exponent ν
and the dynamic critical exponent z [23]. Thus, close to
the quantum critical point, the energy gap Δ between the
ground state and the first relevant excited state, the
relaxation time τ and the correlation length ξ scale as [24]

Δ ∼ jλjzν; τ ∼ jλj−zν; ξ ∼ jλj−ν; ð1Þ

where λ is a dimensionless parameter which measures the
distance from the critical point. We also consider a protocol
in which the Hamiltonian of the system is modified in such
a way that the parameter λðtÞ can be approximated as a
linear quench λðtÞ ¼ vt near the critical point, where v > 0
is the quench rate. The system is initially prepared in the
ground state at t0 → −∞ and the protocol stops at t1 → ∞.
According to the KZM, the evolution of the system can be
divided into three parts: (1) t0 < t < −t�, (2) −t� < t < t�,
and (3) t� < t < t1, where the time t� is determined by the
following argument [3,4,24,25]. During parts (1) and (3),
the relaxation time of the system is sufficiently small for its
evolution to be considered adiabatic (τ < v−1), since it can
always catch up with the change of λðtÞ (adiabatic region).
In contrast, during part (2) the relaxation time is large
compared to v−1 and as a consequence the state of the
system is frozen out (impulse region). The freeze-out time
t� can be estimated by the following relation t� ≃ τ½λðt�Þ�
and thus we obtain t� ∼ v−zν=ðzνþ1Þ. Then, the initial state
for the adiabatic dynamics of part (3) is approximately
the final state of the evolution of part (1), and is there-
fore characterized by a correlation length ξ� ¼ ξ½λðt�Þ�∼
v−ν=ðzνþ1Þ. This correlation length corresponds to the
characteristic length of the system, e.g., the size of the
magnetic domains. Thus, the average density of defects or
domain walls can be estimated as

hnexi ∼ ξ�−d ∼ vðdνÞ=ðzνþ1Þ; ð2Þ

where d is the dimension of the system.
The above results can be reproduced by using the

adiabatic perturbation theory [9–11]. For this purpose,
we consider a system defined on a d-dimensional lattice
and described by a Hamiltonian Ĥ½λðtÞ� ¼ Ĥ0 þ λðtÞV̂,
where Ĥ0 is the Hamiltonian at the quantum critical point
and λðtÞ, now called the work parameter [15], is controlled
by an external agent according to the above protocol. Here,
V̂ is the driving Hamiltonian. We assume that the system
can be described by independent quasiparticles (denoted
by mode k), and that at the critical point the energy gap
vanishes due to the fact that the dispersion relation of
low-energy (long wavelength, small k) modes exhibits
the scaling behavior ωk ¼ cjkjz (ℏ ¼ 1) [23], where c is
a nonzero constant. We also assume that at most one

quasiparticle in every mode can be excited after the quench,
which is called the “single-excitation” approximation in
this Letter. Then, within the adiabatic perturbation theory,
the excitation probability of the kth-mode quasiparticle pk
is dominated by (assuming that there is no additional Berry
phase) [9,11,24]

pk ≈
����
Z

λ1

λ0

dλh1kðλÞj∂λj0kðλÞieiv
−1
R

λ

λ0
dλ0ωkðλ0Þ

����
2

; ð3Þ

where ∂λ ¼ ∂=∂λ, λ0 ¼ λðt0Þ, λ1 ¼ λðt1Þ, and jnkðλÞi
denotes the instantaneous energy eigenstate of mode k
of ĤðλÞ with the occupation number nk. Then, the average
density of excitations hnexi reads

hnexi ¼ lim
N→∞

1

N

X
k

pk ¼
Z

ddk
ð2πÞd pk; ð4Þ

where N denotes the number of the lattice points. In order
to remove the quantity v−1 in the exponential function in
the integral of pk [Eq. (3)], we introduce two rescaled
quantities, θ and ϕ, defined by [9,11,24]

λ ¼ θv1=ðzνþ1Þ; k ¼ ϕvν=ðzνþ1Þ: ð5Þ

Also following Refs. [11,24], we introduce the general
scaling argument

ωkðλÞ ¼ jλjzνFðk=jλjνÞ;
h1λkj∂λj0λki ¼ λ−1Gðk=jλjνÞ; ð6Þ

where F and G are two model-dependent scaling functions
satisfying FðxÞ ∝ xz and GðxÞ ∝ x−1=ν for jxj ≫ 1. This is
motivated by dimensional considerations and the require-
ment that the spectrum of the high energy modes should be
insensitive to λ. Thus, hnexi reads [9,11]

hnexi ≈ vðdνÞ=ðzνþ1Þ
Z

ddϕ
ð2πÞd KðϕÞ; ð7Þ

where

KðϕÞ ¼
����
Z

θ1

θ0

dθ
θ
G

�
ϕ

jθjν
�
exp

�
i
Z

θ

θ0

dθ0jθ0jzνF
�

ϕ

jθ0jν
������

2

;

ð8Þ

with λ0 ¼ θ0v1=ð1þzνÞ and λ1 ¼ θ1v1=ð1þzνÞ. For dν=
ðzνþ 1Þ < 2, the integral Eq. (8) converges in the limit
v → 0 and therefore hnexi ∼ vdν=ðzνþ1Þ, in accordance to the
KZM prediction. But for dν=ðzνþ 1Þ > 2, the integral
Eq. (8) does not converge, which means that it is not
dominated by the low-energy modes [9–11]. The high-
energy (ultraviolet) contribution to the integral can be
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approximated by the regular analytic adiabatic perturba-
tion theory [9–11], which results in the quadratic scaling
hnexi ∼ v2 [26]. For dν=ðzνþ 1Þ ¼ 2, an additional loga-
rithmic correction is expected, i.e., hnexi ∼ v2 ln v
[10,11,33]. This concludes our review of the KZM and
the adiabatic perturbation theory. In the following, they are
applied in analyzing the scaling behaviour of the work
distribution during a linear quench.
Scaling behavior in the characteristic function of

work.—We define the work applied during the quench
on the basis of the usual two-time measurement scheme,
i.e., as the difference between the results of the projective
measurements [34–38] of the system’s energy before and
after the linear quench. It is a stochastic quantity with a
distribution function PðwÞ, and the logarithm of its char-
acteristic function [the Fourier transform of PðwÞ], called
the cumulant CFW, reads

ln χðuÞ ¼ ln Tr½Û†ðt1; t0ÞeiuĤðλ1ÞÛðt1; t0Þe−iuĤðλ0Þρ̂0�

¼
X∞
n¼1

ðiuÞn
n!

κn; ð9Þ

where Ûðt1; t0Þ is the time evolution operator, ρ̂0 is the
initial state and κn is the nth cumulant of work [39]. We
assume that λðtÞ evolves according to the above protocol,
the system is initially prepared in the ground state of Ĥðλ0Þ
and the cumulant CFW satisfies a large deviation principle
[40], i.e., limN→∞N−1 ln χðuÞ exists.
For the adiabatic driving (v → 0), the system is in

the ground state all the time. Hence, we have κ1 ¼P
k½ε0kðλ1Þ − ε0kðλ0Þ�≡ Nμ, where ε0kðλÞ denotes the zero-

point energy of the kth mode of ĤðλÞ and κn ¼ 0 for n ≥ 2
due to the definite measurement results. Thus, the cumulant
CFW for the adiabatic process should be ln χaðuÞ ¼ Niuμ
according to Eq. (9). For nonadiabatic driving (v is small
but nonzero), since the nonadiabatic corrections to the
cumulant CFW come from the impulse region of the KZM,
we expect these corrections to exhibit the following scaling
relation, i.e., κ1 ¼ Nðμþ vδ1f1Þ and κn ¼ Nvδnfn, n ≥ 2,
where fn are model-dependent scaling functions and δn are
the corresponding exponents characterizing the scaling
behavior of each cumulant.
Every exponent δn can be determined as follows.

According to Eq. (9) and in the single-excitation approxi-
mation, the scaling behavior of κn should be the scaling
behavior of N−1 P

k½ωkðλ1Þ�npk because the excitations of
quasiparticles in different modes are independent, i.e.,
κ1 ≈ N½μþ N−1P

k ωkðλ1Þpk�, κn ≈
P

k½ωkðλ1Þ�npk (see
Supplemental Material [26]). Now, by utilizing the expres-
sions of κ1 and κn and following the same procedure as in
the last section, we obtain

vδnfn ≈ vðdνÞ=ðzνþ1Þ
Z

ddϕ
ð2πÞd ½ωk¼ϕvν=ðzνþ1Þ ðλ1Þ�nKðϕÞ: ð10Þ

If we fix λ0 and λ1 when varying v and λ1 is away from the
critical point, ωkðλ1Þ is a nonzero constant when k → 0.
Also because only low-energy modes can be excited after
the quench, we obtain

vδnfn ≈ ½ωk¼0ðλ1Þ�nvðdνÞ=ðzνþ1Þ
Z

ddϕ
ð2πÞd KðϕÞ: ð11Þ

Following the same analysis as that after Eq. (7), the
exponents in the cumulant CFW read

vδn ¼

8>><
>>:

vdν=ðzνþ1Þ dν=ðzνþ 1Þ < 2;

v2 ln v dν=ðzνþ 1Þ ¼ 2;

v2 dν=ðzνþ 1Þ > 2.

ð12Þ

Finally, according to Eq. (9), since in this case δn is
independent of n, ln χðuÞ reads

ln χðuÞ ¼ ln χaðuÞ þ NvδnfðiuÞ; ð13Þ

where fðiuÞ≡P∞
n¼1ðiuÞnfn=n!. We would like to empha-

size that the scaling behavior exists not only in the CFW but
also in the work distribution [see Eq. (14)]. According to
the Gartner-Ellis theorem, the distribution of the work
per lattice site PNðwÞ≡ PðNwÞ also takes on the large
deviation form, limN→∞N−1PNðwÞ ¼ −IðwÞ. Here, the
rate function IðwÞ is obtained by the Legendre-Fenchel
transform [40] via

IðwÞ ¼ sup
u∈R

fuðw − μÞ − vδnfðuÞg: ð14Þ

Now, let us consider a second case: λ1 is near the critical
point. Since in this case ωkðλ1Þ ¼ cjkjz when k → 0,
according to Eq. (10), we have

vδnfn ≈ cnv½ðdþnzÞν�=½zνþ1�
Z

ddϕ
ð2πÞd jϕj

nzKðϕÞ: ð15Þ

Similar to the discussion about hnexi, we obtain

vδn ¼

8>><
>>:

vðdþnzÞν=ðzνþ1Þ ðdþ nzÞν=ðzνþ 1Þ < 2;

v2 ln v ðdþ nzÞν=ðzνþ 1Þ ¼ 2;

v2 ðdþ nzÞν=ðzνþ 1Þ > 2.

ð16Þ

We note that the quantity in Eq. (15) for n ¼ 1 is called the
excess energy in Refs. [10,11]. If δ1 < 2, to a good
approximation, we can cut off the sum in Eq. (9) to the
first order (n ¼ 1) for sufficiently small v and obtain

ln χðuÞ ≈ ln χaðuÞ þ Nvδ1iuf1: ð17Þ

Accordingly, PNðwÞ is a Dirac delta distribution located
at μþ vδ1f1.
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In summary, our analysis shows that the scaling of the
work cumulants is qualitatively different depending on
whether λ1 ¼ 0. If λ1 ≠ 0, all the cumulants (for whatever
n) have the same scaling exponent, while if λ1 ¼ 0, they do
not. This is illustrated in Fig. 1 by the exact numerical
simulation of the 1D transverse Ising model [41], which is
also studied analytically in the following. It is important to
note that this difference between the two kinds of quenches
is not observed for the density of excitations nex, which
displays the same scaling behavior irrelevant to the ending
point of the protocol.
Example.—We calculate the CFW of the 1D transverse

Ising model to demonstrate our results since it is solvable
and the KZM is valid in this model [25,41]. The
Hamiltonian of a chain of N spins in a transverse magnetic
field reads

ĤðλÞ ¼ −J
XN
l¼1

½σ̂zl σ̂zlþ1 þ ðλ − 1Þσ̂xl �; ð18Þ

with the Born–von Kármán periodic boundary condition.
Here, σ̂x;y;zl denote the Pauli matrices on site l, and J
denotes the energy scale. The critical points are at λ ¼ 0, 2.
Moreover, d ¼ z ¼ ν ¼ 1 [24,25]. For the critical point
λ ¼ 0, we choose λðtÞ ¼ vt, λ0 < 0 and 0 < λ1 < 2.

According to Ref. [45], when N → ∞, the cumulant
CFW reads

ln χðuÞ ¼ N
π

Z
π

0

dk ln
gkðuÞ
gkð0Þ

; ð19Þ

where

gkðuÞ ¼ f1þ cosðuω1
kÞ cos½ðu − iβÞω0

k�
þQk sinðuω1

kÞ sin½ðu − iβÞω0
k�g1=2: ð20Þ

Here, β ¼ ðkBTÞ−1 is the inverse temperature of the
canonical initial state, ω0

k ¼ ωkðλ0Þ;ω1
k ¼ ωkðλ1Þ, where

ωkðλÞ ¼ 2J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ − 1þ cos kÞ2 þ sin2 k

p
is the energy of the

kth mode. Also, Qk ¼ 1–2pk, where pk ≈ e−2πJk
2=v is the

excitation probability in the corresponding Landau-Zener
model for mode k [41]. From Eq. (19), we obtain the first
and the second cumulants of work

κ1 ¼
N
2π

Z
π

0

dkðω0
k −Qkω

1
kÞ tanh

�
βω0

k

2

�
;

κ2 ¼
N
4π

Z
π

0

dk½ðω0
k −Qkω

1
kÞ2 þ ð1 −Q2

kÞðω1
kÞ2 coshðβω0

kÞ�

× sech2
�
βω0

k

2

�
: ð21Þ

Quantum phase transitions occur at the absolute zero.
Hence, we consider that case in which the initial state is
chosen to be the ground state of Ĥðλ0Þ. From Eq. (19), we
have

lnχðuÞ ¼ N
Z

π

0

dk
2π

fiuðω0
k −ω1

kÞ þ ln½1þpkðe2iuω1
k − 1Þ�g;

¼ lnχaðuÞ þN
X∞
n¼1

ð−1Þnþ1

n

Z
π

0

dk
2π

pn
kðe2iuω

1
k − 1Þn;

ð22Þ
where ln χaðuÞ ¼ Niuμ ¼ Niuð2πÞ−1 R π

0 dkðω0
k − ω1

kÞ is
the cumulant CFW for the adiabatic process. The sum
in the last equation is convergent under the condition
jpkðe2iuω1

k − 1Þj ¼ 2pkj sinðuω1
kÞj< 1 [46]. Also, for T ¼ 0,

from Eq. (22), we have

κ1 ¼ Nðμþ 1

π

Z
π

0

dkω1
kpkÞ;

κ2 ¼
2N
π

Z
π

0

dkðω1
kÞ2pkð1 − pkÞ;

κ3 ¼
4N
π

Z
π

0

dkðω1
kÞ3pkð1 − pkÞð1 − 2pkÞ: ð23Þ

Due to the exponential decay of pk, only low-energy modes
can get excited. Thus, we extend the upper limit of the

FIG. 1. The first three cumulants of the work distribution as a
function of the quenching rate for a 1D transverse Ising chain.
Solid lines correspond to the exact analytic solution in the
macroscopic limit [42] and dots to an exact numerical simulation
of a chain of N spins. (a) Quench between λ0 ¼ −4 and λ1 ¼ 1,
for which all the exponents are 1=2. In this case we have N ¼
4000 and the deviations at low v are due to the finite size effects
[12]. (b) Quench between λ0 ¼ −4 and λ1 ¼ 0, for which our
theory predicts κ1 − Nμ ∝ v, κ2 ∝ v3=2 and κ3 ∝ v2 ln v. Even in
this case of a shorter chain (N ¼ 1000), finite size effects are less
relevant. This is natural given the scale invariance at the critical
point, which is the ending point of the protocol.
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integral to ∞ and we approximately have pke
2iuω1

k ≈
pke

2iuω1
k¼0 ¼ pke4iuJλ1 . In this way, from Eqs. (22) and

(23), we obtain

1

N
ln

χðuÞ
χaðuÞ

¼
X∞
n¼1

ð−1Þnþ1

n
ðe4iuJλ1 − 1Þn

2π

Z
∞

0

dke−2nπJk
2=v;

¼ −v1=2J−1=2
ffiffiffi
2

p
Li3=2ð1 − e4iuJλ1Þ
8π

; ð24Þ

and

κ1 ¼ Nðμþ v1=2J1=2λ1
ffiffiffi
2

p

2π
Þ;

κ2 ¼ N
v1=2J3=2λ21ð2

ffiffiffi
2

p
− 2Þ

π
;

κ3 ¼ N
v1=2J5=2λ314ð6

ffiffiffi
2

p
− 18þ 4

ffiffiffi
6

p Þ
3π

; ð25Þ

where LisðzÞ ¼
P∞

l¼1 z
l=ls is the polylogarithm function.

Also, we have fðuÞ ¼ −
ffiffiffiffiffiffiffiffi
2=J

p
Li3=2ð1 − e4Juλ1Þ=ð8πÞ and

δn ¼ 1=2 ¼ dν=ðzνþ 1Þ. Obviously, the 1D transverse
Ising model verifies our predictions in Eqs. (12) and (13).
We also would like to do some quantitative analysis

about the work distribution function. fðuÞ is a monotonic
function with the following asymptotic behavior: for
u → −∞, fðuÞ ¼ −

ffiffiffiffiffiffiffiffi
2=J

p
ζð3=2Þ=ð8πÞ, where ζðzÞ is the

Riemann zeta function; for u → ∞ [the domain of fðuÞ
has been extended to the real axis by applying analytic
continuation], fðuÞ ¼ Jðλ1uÞ3=2

ffiffiffi
2

p
=½πΓð5=2Þ�, where ΓðzÞ

is the Gamma function. Hence, from the asymptotic
behavior of fðuÞ and by applying the Legendre-Fenchel
transform, we find that for w < μ, PNðwÞ ¼ 0 which
is consistent with the initial ground state condition. A
confusion may arise when we consider w > wm ≡ μþR
π
0 dkω1

k=π since now PNðwÞ is the probability of unphys-
ical events. This is a consequence of the approximation
in which we extend the upper limit of the integral
to ∞. Actually, it can be proved that when w > wm,
IðwÞ > IðwmÞ ∝ v−1. Because PNðwÞ ∝ e−NIðwÞ,
PNðwÞ < PNðwmÞ ≪ 1, which indicates that the probabil-
ities of the unphysical events are sufficiently small and our
approximation is still reasonable.
If λ1 is near the critical point, ω1

k ¼ 2Jk when k → 0.
And for every mode, the dynamics corresponds to a half
Landau-Zener problem [11,24,43,44], where pk reads

pk ¼ 1 − 2
e−παk=8

παk
sinh

�
παk
4

�

×

����Γ
�
1þ iαk

8

�
þ

ffiffiffiffiffi
αk
8

r
Γ
�
1

2
þ iαk

8

�
eiπ=4

����
2

; ð26Þ

with αk ¼ 4Jk2=v. This function has the following asymp-
totic behavior: for αk → 0, pk ¼ 1=2; for αk → ∞,
pk ¼ 1=ð2αkÞ2. Because only low-energy modes can get
excited after the quench, we have

κ1 ¼ N

�
μþ 2J

π

Z
∞

0

dkkpk

�
≈ Nðμþ 0.038vÞ;

κ2 ¼
8NJ2

π

Z
∞

0

dkk2pkð1 − pkÞ ≈ 0.092Nv3=2J1=2: ð27Þ

For n ≥ 3, the upper limit of the integral cannot be extended
to ∞ due to the power-law decay of pk. After some careful
analysis, we find for n > 3, κn ∼ v2 is reproduced [47].
Moreover, for n ¼ 3, the logarithmic correction appears:
κ3 ∼ v2 ln v. These results again verify our predictions
in Eq. (16).
Conclusions.—In this Letter, we have studied the sta-

tistics of the work applied across a quantum phase
transition in systems characterized by independent quasi-
particles. We have shown that all the cumulants of the work
distribution exhibit a scaling behavior for small quench
rates, and that the scaling exponents are determined by the
dimension of the system and the critical exponents of
the transition. This is in analogy to the predictions of
the KZM, although there are qualitative differences in
quenches ending close to and away from the critical point.
In addition, we are also able to determine the scaling
exponents δn when (1) the energy spectrum is always
gapped during the protocol, (2) the initial state is not the
ground state, or (3) the protocol is a sudden quench
protocol near the critical point (see the Supplemental
Material [26]). We also show that although the cumulant
CFW for slow linear quenches traversing a critical point is
analytic for u ≃ 0 (which allows to properly define the
cumulants), it has nonanalyticities at certain values of u.
This is related to the phenomenon of dynamical quantum
phase transitions [26], which has been previously reported
for the case of sudden quenches [18,19,48].
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