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The standard approach to quantum engines is based on equilibrium systems and on thermodynamic
transformations between Gibbs states. However, nonequilibrium quantum systems offer enhanced
experimental flexibility in the control of their parameters and, if used as engines, a more direct
interpretation of the type of work they deliver. Here we introduce an out-of-equilibrium quantum engine
inspired by recent experiments with cold atoms. Our system is connected to a single environment and
produces mechanical work from many-body interparticle interactions arising between atoms in highly
excited Rydberg states. As such, it is not a heat engine but an isothermal one. We perform many-body
simulations to show that this system can produce work. The setup we introduce and investigate represents a
promising platform for devising new types of microscopic machines and for exploring quantum effects in
thermodynamic processes.
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Engines are devices able to convert some form of energy
into mechanical work. The most famous examples, heat
engines, operate by exchanging heat with (at least) two
thermal reservoirs at different temperatures [1–4]; other
working principles can be implemented also with a single
reservoir [5–7]. Nowadays, due to significant technological
breakthroughs in manipulating and controlling microscopic
systems, a new focus is on devising and realizing efficient
machines harnessing quantum effects [7–12]. To explore
possible avenues at this scale, quantum thermodynamics
has been put forward as a theoretical framework merging
features of quantum physics with the laws of thermody-
namics [13–15]. While much progress has been made in
theoretically describing quantum engines, it is often not
clear how energy, in the form of mechanical work, can be
extracted from a many-body quantum system.
Here, we present and analyze a quantum engine whose

working system is described by genuine nonequilibrium
many-body steady states and not by thermal states (see,
e.g., [16,17]), as is more standard. This novel feature comes
at an additional cost in terms of efficiency: maintaining a
nonequilibrium steady state requires the constant injection
of energy which is continuously dissipated. Current experi-
ments allow for the implementation of such driving pro-
tocol and for the precise control over the emerging
nonequilibrium states. We present our ideas in the context
laser driven Rydberg atoms [see Fig. 1(a)] arranged in a
one-dimensional (1D) chain, e.g., achieved by means of
optical lattices or optical tweezer arrays [18–28]. In this
scenario, we envisage for the sake of illustration a movable
“piston” subject to the (repulsive) force between Rydberg

excited atoms and allowing one to tune the volume of the
chain, as shown in Fig. 1. In current setups, the length of the
chain is not a dynamical degree of freedom but rather a
parameter that can be externally controlled. As we show in
this Letter, this setting is already sufficient to experimen-
tally determine the amount of work that can be generated
with our engine.
This physical setup offers a transparent interpretation of

the engine, sketched in Fig. 1(b), in particular in terms of
the nature of the work it can provide. The laser pumps
energy (input) into the system that converts it into inter-
action energy of Rydberg states, and which can then be
extracted through the mechanical motion of the piston
(output). The system thus acts as an optomechanical energy
converter, with spontaneous decay of Rydberg excited
states leading to constant energy losses during the cycle.
The periodic protocol we consider consists of two isochoric
transformations, which increase or decrease the density-
density interactions of the Rydberg “working fluid,” and of
two transformations where the volume is varied. This cycle
is illustrated in Fig. 1(c) through an analogy with a classical
engine.
Going beyond previous proposals, our engine is based on

a genuine nonequilibrium protocol, which we investigate
from a fully dynamical, i.e., explicitly time-dependent,
viewpoint [16,17]. Unlike recent work, see, e.g.,
Refs. [16,29,30], we provide nonperturbative results for
open many-body quantum systems beyond the mean-field
approximation. Moreover, our device is not a heat engine
but rather an isothermal engine [6] operating far from
equilibrium in contact with a single environment. From an

PHYSICAL REVIEW LETTERS 124, 170602 (2020)

0031-9007=20=124(17)=170602(7) 170602-1 © 2020 American Physical Society

https://orcid.org/0000-0002-6961-7143
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.170602&domain=pdf&date_stamp=2020-04-30
https://doi.org/10.1103/PhysRevLett.124.170602
https://doi.org/10.1103/PhysRevLett.124.170602
https://doi.org/10.1103/PhysRevLett.124.170602
https://doi.org/10.1103/PhysRevLett.124.170602


experimental viewpoint this approach provides a sub-
stantial simplification since the engine does not need to
alternate between two different heat baths [17]. Our setup
can be used to design realistic quantum devices or as
a new test bed to explore the impact of quantum effects
on thermodynamic processes far from equilibrium.
Finally, our framework provides, at least in principle,
a viable mechanism for direct work measurement and
extraction; the piston is a macroscopic object, whose
position couples to the interaction energy of the atoms,
and all relevant quantities that characterize our engine are
accessible experimentally by measuring density correlation
functions through spatially resolved imaging of Rydberg
excitations [31].
The model.—We consider a 1D array of laser driven

Rydberg atoms. The Hamiltonian, in a frame rotating with
the laser frequency, is given by [32] [cf., Fig. 1(a)]

H ¼ Ω
XNat

k¼1

σðkÞx − μ
XNat

k¼1

nðkÞ þHv
LG: ð1Þ

Here, σxjg=ei ¼ je=gi, while n counts the presence of an
excitation njei ¼ jei and njgi ¼ 0. Nat is the total number
of atoms. The first two terms are related to the laser driving.
The term Hv

LG is the lattice gas Hamiltonian accounting for
classical (i.e., diagonal) volume-dependent (repulsive)
nearest-neighbor interactions,

Hv
LG ¼ 1

v

XNat−1

k¼1

nðkÞnðkþ1Þ:

This operator represents the mechanical energy that is
stored in the system and can be altered by changing the
inverse interaction strength v through variations of the
volume of the 1D array of atoms, see Figs. 1(b) and 1(c).

The roles played by the other terms in the Hamiltonian
(1) are as follows: the one proportional to Ω leads to
excitations being created and annihilated. This parameter is
not altered during the cycle; it rather provides the system
with the background fluctuations needed to generate atomic
transitions between jgi and jei. Transitions are further
controlled by the detuning term μ. Large detunings make
transitions off-resonant, suppressing the probability ampli-
tude of observing excitations or deexcitations. Combining
this observation with the fact that the system also expe-
riences spontaneous atomic decays [see Eq. (2) below], one
would expect to observe, on average and after a transient, a
larger number of Rydberg excitations for small detunings μ.
Indeed, when the detuning is large, atoms that are found in
the ground state after decaying are less likely excited due to
the transition being off resonant. This effect leads to a lower
Rydberg state population and, in turn, to a lower interaction
energy. Hence, varying the parameter μmakes it possible to
modify the interaction energy of the Rydberg system
without changing its volume; this allows us to realize
the engine cycle as discussed in Fig. 1(c).
In order to account for the spontaneous decay of excited

states, which is indeed a non-negligible feature of experi-
ments, we exploit a Markovian dissipative map in Lindblad
form [33,34]. The latter is defined for atom decay as

L½X� ≔ γ
XNat

k¼1

�
σðkÞ− XσðkÞþ −

1

2
fnðkÞ; Xg

�
: ð2Þ

Here, γ−1 represents the characteristic lifetime of the
Rydberg state, and σ−jei ¼ jgi, σþ ¼ σ†−. Altogether, the
system density matrix ρt evolves, in the rotating frame,
through the equation

_ρt ¼ −i½H; ρt� þ L½ρt�: ð3Þ

(a) (b) (c)

FIG. 1. Rydberg atomic chain and schematics of the engine. (a) Array of Rydberg atoms confined in a 1D geometry. Each atom is
modeled as a two-level system with ground state jgi, excited (Rydberg) state jei and level splitting ωat. Laser driving generates
oscillations, jgi ↔ jei, at Rabi frequency Ω; transitions can be made off resonant through the detuning μ. The volume V can be tuned
through a movable “piston” or mirror. This control mechanism changes the interatomic distance thus modifying the interaction strength,
v−1, between neighboring excited atoms. (b) Sketch of the Rydberg atom engine. The quantum system is driven out of equilibrium by a
laser injecting energy which can be lost through atom decay. By means of an appropriate periodic manipulation of the “piston,” the
system can deliver positive net output work. (c) Four-stroke cycle and analogy with Rydberg atomic engine. During the expansion work
WOut is extracted. This stroke is followed by a cooling step decreasing the interaction energy of the working fluid. Then a compression
performs workWIn on the system, and a heating step increases the interaction energy. Cooling and heating are implemented by varying
the laser detuning.
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This model for laser driven Rydberg systems is, in fact,
phenomenological. Still, it is commonly used to interpret
cold-atom experiments as it enables a quantitative descrip-
tion of atomic interactions and has been extensively tested
in practice. Note that the dissipative generator of Eq. (2)
contains local Lindblad operators even though the
Hamiltonian H involves interactions. This feature can lead
to violations of the second law in generic instances [35–39].
However, as we show below, in our zero-temperature setup,
in which only atom decay plays a role [37], there are no
thermodynamic inconsistencies.
Internal energy, first law and engine cycle.—In order to

discuss the engine depicted in Fig. 1 and the net output that
it can deliver, we need to develop a thermodynamic
description of the system. To this end, we first have to
identify the internal energy of the engine, which corre-
sponds to the energetic content in the working fluid that
could, in principle, be extracted in the form of work. In our
setup, this quantity is related to the repulsive interaction
energy Hv

LG and to the single-atom energy

Hat ¼ ωat

XNat

k¼1

nðkÞ;

associated with the energy difference, ωat, between excited
and ground state, see Fig. 1(a). We thus define the system
energy operator, Hv

in, as

Hv
in ≔ Hat þHv

LG ð4Þ

and the specific internal energy as

EinðtÞ ≔
1

Nat
Tr½ρtHv

in�jv¼vt : ð5Þ

The contribution Hat does not appear in Eq. (1) since the
latter represents the Hamiltonian of the system in the
interaction picture. The thermodynamic balance however
must be formulated in the Schrödinger picture [40]. The
unitary connecting Schrödinger and interaction picture has
a generator proportional to ðμþ ωatÞ

P
k n

ðkÞ, which com-
mutes with Hv

in. Therefore, after identifying the internal
energy we can derive the thermodynamic balance using
Eq. (3). The choice of the internal energy in Eq. (5) derives
from a microscopic picture where the atomic chain, i.e., the
system proper, is perturbed by the laser and the interaction
with a thermal environment. In this setting, the Hamiltonian
terms proportional toΩ and μ describe the interaction of the
system with a laser, while the dissipative term, proportional
to γ, describes its interaction with an environment. The
actual internal energy of the atom system is thus solely
associated with the Hamiltonian term in Eq. (4).

The first law thus reads

_Ein ¼ −fvtt _vt þ It − Jt: ð6Þ

Here,

fvtt ¼ −Tr½ρt∂vHv
in�jv¼vt ; ð7Þ

is the generalized force associated with the inverse inter-
action strength v, which is the only term in the internal
energy responsible for mechanical work in our setup. The
input power provided by the laser is given by

It ¼ iTr½ρt½Hμ
ex; Hv

in��jμ¼μt
v¼vt ;

where the term Hμ
ex ¼ H −Hv

LG corresponds to the laser-
atom interaction. Finally, we have to account for the
dissipated heat

Jt ¼ −Tr½ρtL½Hv
in��jv¼vt :

Note that, due to the form of Hv
in, this quantity is non-

negative (Jt ≥ 0) and vanishes only in the zero-excitation
state. The environment is effectively at zero temperature as
it is highly unlikely to observe spontaneous excitation of
atoms at room temperature. Therefore, the above properties
of Jt are sufficient to guarantee consistency with the second
law: no heat is extracted from the zero-temperature
environment.
The engine cycle we propose consists of a four-stroke

periodic driving involving sudden quenches of the param-
eters μ and v, as depicted in Fig. 2(a). The presence of
radiative decay is thereby of fundamental importance. This
feature prevents the system from heating up to infinite
temperature [41–43], as it would happen for an isolated

(a) (b)

FIG. 2. Periodic driving and representative cycle of the internal
energy. (a) Periodic driving protocol in the Rydberg system. The
parameters in the various transformations are varied through
sudden quenches. (b) Representative instance of the time-depen-
dent internal energy for the cycle shown in (a). Sudden jumps in
Ein are associated with work exchanges through the interparticle
interactions (negative in the expansion). Curves with finite
derivative represent relaxation after quenches in the laser detun-
ing parameter μ.
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engine. Instead, the system state approaches a nontrivial
asymptotic cycle (see the Supplemental Material [44]).
The actual cycle starts from A with a transformation

given by a sudden expansion of the volume, resulting in a
smaller interaction strength, vmin → vmax ¼ vmin þ Δv.
During this expansion, work is extracted from the system.
Afterwards, the system immediately undergoes a sudden
quench μmin → μmax ¼ μmin þ Δμ. In this transformation,
no work is exchanged, but the system now evolves for a
relaxation period, shown in Fig. 2(b), reaching a non-
equilibrium state with a lower mean interparticle energy.
The following sudden compression, reflected in
vmax → vmin, thus requires less work than is extracted
during the expansion. Immediately after the compression,
the transformation μmax → μmin takes the system back to its
initial state through a second relaxation period. In Fig. 2(b)
we show a representative cycle of the internal energy
following the periodic driving which further highlights the
two relaxation periods in the cycle. In the regime depicted
in Fig. 2(b), the engine delivers positive net output.
To quantify the net output of our Rydberg engine, we

integrate the first law over a full period obtaining

wnet ≔
Z

dtfvtt _vt ¼ I − J;

where I ¼ R
dtIt is the total input in one cycle and J ¼R

dtJt is the total dissipated heat. For wnet ≥ 0, we can thus
define the efficiency of the engine as

η ¼ wnet

I
¼ wnet

wnet þ J
≤ 1;

where the last equality follows from Jt ≥ 0. Adapting these
quantities to our driving protocol, we have

wnet ¼ −wAB − wCD;

with (see [44])

wAB ¼
�

1

vmax
−

1

vmin

�
1

Nat

XNat−1

k¼1

hnðkÞnðkþ1ÞiA ≤ 0;

wCD ¼
�

1

vmin
−

1

vmax

�
1

Nat

XNat−1

k¼1

hnðkÞnðkþ1ÞiC ≥ 0: ð8Þ

In the above equations, h·iA=C is the expectation value taken
over the nonequilibrium steady state corresponding to the
parameters in A=C, respectively. To produce net work, one
needs to have jwABj > jwCDj [cf. Fig. 2(b)], which directly
translates in

P
khnðkÞnðkþ1ÞiA >

P
khnðkÞnðkþ1ÞiC. Hence,

interactions must be stronger during the expansion.
Furthermore, as we are considering infinite relaxation
periods, we have J → ∞, since constant dissipation, also
known as housekeeping heat, is required to maintain the
nonequilibrium steady state even if no thermodynamic

transformation is performed. For finite relaxation times,
where Jt < ∞, it is however possible to have a finite
efficiency also in our nonequilibrium setting.
Simulation results.—We now explore numerically the

cycle as a function of the chosen values of vmin and μmin.
We fix Ω ¼ γ ¼ 1 and assume that, after quenching μ, the
system fully relaxes to its genuine quantum nonequilibrium
steady state.
In Fig. 3(a), we show the net work produced by an

infinite system within a mean-field approximation. In
Fig. 3(b), instead, we display numerically exact data for
a 1D chain obtained via infinite matrix product algorithms
[50] (see [44] for details). First, we observe that it is indeed
possible to extract net work from our cycle. Many-body
simulations, accounting for quantum correlations in a
nonperturbative way, confirm that this effect is not only
a feature of the nonlinear mean-field dynamics. In particu-
lar, a boundary arises in the phase diagrams of Figs. 3(a)
and 3(b) separating a region where mechanical work can be
extracted from the atomic array and a region where the
system absorbs energy instead of delivering work.
Additional finite-size and finite-relaxation results (see
[44]) show unambiguously that positive output work can
be extracted also in finite systems and very importantly also
with finite relaxation times, i.e., with a finite efficiency.
Discussion.—We have developed a many-body quantum

engine that operates intrinsically under nonequilibrium
conditions. While this design strategy, in contrast to
conventional heat engine cycles, requires additional energy
input to keep the working system in a nonequilibrium state
(Jt does not vanish even at stationarity), it also allows for a
more direct and efficient control of physical parameters,

(a) (b)

FIG. 3. Dissipative infinite 1D Rydberg chain. Phase diagram
for a Rydberg engine. The parameters of the cycle for both plots
are Ω ¼ 1, γ ¼ 1, Δv ¼ Δμ ¼ 1, and the relaxation time in-
volved in the cycle is infinite. We focus on the stationary cycle.
(a) Mean field. The panel displays a density plot for the work
delivered by the engine as a function of vmin and μmin. It is indeed
possible to have cycles that produce positive net work. (b) Infinite
1D Rydberg atomic system with nearest neighbor interactions.
We observe the same qualitative features displayed by mean-field
results. From a quantitative point of view, the work that can be
extracted in an infinite 1D system differs from the one estimated
in the mean-field approximation. In particular, the maximum
amount of net work that can be extracted in a 1D system is
smaller than predicted by the mean-field theory.
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e.g., through external laser fields. Focusing on Rydberg
atom ensembles, we have shown that it is possible to
generate useful work.
In order to experimentally determine the amount of

produced work, a measurement of density-density corre-
lations is sufficient. In principle, it might even be possible
to extract this work through a mechanical degree of
freedom. In a hypothetical experiment, illustrated in
Fig. 1(a), this degree of freedom could be a movable
mirror, which controls the spacing of the optical lattice
trapping the atoms thus acting as a reciprocating piston.
Assuming that it is possible to reach a parameter regime
where the interatomic separation is locked to the wave-
length of the cavity mode, a direct coupling between the
interaction energy and the mirror position can be estab-
lished [44]. This mechanism would make it possible to
transfer the output of our engine into a controllable work
storage; its practical implementation therefore constitutes
an important challenge for future experiments.
In our proposal, we did not consider the effect that

measuring the position of atoms would have on the
thermodynamic cycle and on fluctuations of the generated
work. Instead, we have treated the position of the atoms as a
classical parameter, in the spirit of a Born-Oppenheimer
approximation. It would be interesting to derive from first
principles a description of our engine that accounts for
cross correlations between position and momentum of the
atoms and their electronic state.
It further remains an open question whether nontherm-

alizing closed quantum systems, as in the case of many-
body localization [60–63] or prethermal metastable regimes
due to almost conserved charges [64,65], might be
exploited to devise an isolated nonequilibrium many-body
engine with a nontrivial cycle.
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