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We demonstrate experimentally that a granular packing of glass spheres is capable of storing memory of
multiple strain states in the dynamic process of stress relaxation. Modeling the system as a noninteracting
population of relaxing elements, we find that the functional form of the predicted relaxation requires a
quantitative correction which grows in severity with each additional memory and is suggestive of
interactions between elements. Our findings have implications for the broad class of soft matter systems
that display memory and anomalous relaxation.
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Subjected to a perturbation, many systems in nature
will relax anomalously (i.e., nonexponentially) over long
timescales, suggesting complex dynamics and common
underlying, far-from-equilibrium physics. Examples of
specifically logarithmic relaxation are the slow breaching
of colloidal particles at an interface [1], the magnetization
decay in type-II superconductors [2], the dynamics of
crumpled elastic sheets [3,4], the evolving area of frictional
contact between two interfaces [5,6], and the stress decays
in a granular packing at fixed strain [7,8].
A versatile framework applied to the relaxation of

viscoelastic [9] and dielectric materials [10–12] idealizes
a system as an ensemble of simple, exponential relaxers in
parallel with one another, with a distribution of different
relaxation times (DRT). To explain the widespread occur-
rence of logarithmic relaxation, Amir et al. [13] motivated a
specific distribution of relaxation times on fairly general
grounds. Importantly, the Amir, Oreg, and Imry (AOI)
variant of DRT was also used to explain two-step non-
monotonic relaxation observed in crumpled mylar [4], a
frictional interface [6], and bulk rock salt [14], after
subjecting such systems to a particular driving protocol.
Nonmonotonic relaxation is a surprising and nonintuitive

phenomenon. In the process of energy dissipation, with no
external input after the initial driving, a state variable evolves
in one direction before turning around after some timescale
that was imprinted during the prior driving history. In
contrast with memories that are revealed only when the
system is driven [15], these memories reside in dynamic
processes and thus offer a foothold into studying the quixotic
march to equilibrium of a far-from-equilibrium system.
Here we employ a granular packing to study nonmono-

tonic relaxation within the DRT framework. We store the
memory of an additional strain state in experiment by
appending a compression step at the end of a two-step
driving protocol. The functional form of the relaxation,
while qualitatively similar to that predicted by the model,
requires a quantitative correction which grows in severity

with the additional memory. We suggest a route to recon-
ciliation between the model and experiment, guided by the
presence of discrete relaxation events in the data.
For each experiment, 5 mm diameter soda lime glass

spheres (MoSci) were poured into a 5 cm diameter latex
membrane to form a 2∶1 column (height to diameter)
[Fig. 1(a)]. Isotropic confinement of 40 kPa was applied via
holding the interior of the membrane at lower pressure. The
column was compressed by an Instron universal materials
tester to a strain of ϵ ¼ 0.1, as a fraction of the initial
(uncompressed) height, over 2 min. During this initial
compression, stress builds across the packing and grain
reconfigurations lead to stress fluctuations [Fig. 1(b)]. All
experiments in this Letter began in this way and then were
followed by up to two additional strain stepsΔϵðiÞ after wait
times tðiÞw . The stress relaxation of interest occurs in the final
static hold, during which nothing further is done to the
granular system beyond monitoring the stress.
Simple uniaxial compression followed by a hold without

any additional steps of (de)compression leads to stress
relaxation of the granular material that is approximately
logarithmic in time [Fig. 1(c)], in agreement with past
results [7,8]. That the relaxation is nonexponential suggests
granular materials might be able to exhibit nonmonotonic
relaxation after an appropriate driving protocol, and the
logarithmic form in specific invites a treatment with the
AOI distribution of relaxation rates, as in Refs. [4,6].
One possible protocol to initiate nonmonotonic relaxa-

tion is as follows: rather than holding the system at a strain
state ϵ indefinitely, it is allowed to relax partially for some

time tð1Þw , but then the applied strain is decreased to
ϵ − Δϵð1Þ. After driving a granular packing in this way,
it relaxes in a strikingly nonintuitive manner: without any
additional prompting, nor any additional energy input to the
system, the stress measured increases for a period of time
before turning around and resuming a slow decrease that
shows no signs of stopping on experimental timescales.
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Further, the timescale tð1Þw of the hold in the strain state ϵ
emerges as a memory that is revealed in the turnaround time
tp [Figs. 1(d), 1(e)].
We employ DRT to explain the nonmonotonic relaxa-

tion, as was previously done by Lahini et al. [4]. Within the
framework of DRT, a system is idealized as a population of
simple, exponential relaxers in parallel with a distribution
of relaxation rates PðλÞ. In the AOI variant [13], PðλÞ ∼ 1=λ
over a range ½λmin; λmax�, yielding logarithmic relaxation
over timescales between λ−1max and λ−1min. Compelling reasons
in support of this distribution of relaxation rates were
described in earlier work on luminescence [16]. PðλÞ ∼ 1=λ
is uniform in logλ space and identical whether working in
terms of rates λ or timescales τ ¼ λ−1. Both λ and τ are
scale parameters—i.e., domain of (0, ∞)—and as such this
distribution is the maximum entropy distribution [17] for
which minimal prior information has been assumed. The
distribution maximizes generality, providing a reason for
the widespread occurrence of logarithmic relaxation.
Each of the relaxing elements holds a portion of stress

ΓðλÞ which dissipates exponentially in time according to
dΓ ¼ −λΓdt, and the measured signal (i.e., the total stress)
is the sum over all elements. Compression affects all
elements equally and is taken to occur over a timescale

negligible to even the fastest elements [i.e., a (de)com-
pression step takes ΓðλÞ ← ΓðλÞ þ αΔϵ, with α a constant].
Figure 2(c) shows the system state at various stages of
relaxation, where the elements are displayed from slowest
(left, dark) to fastest (right, light). At a time tw into the
relaxation [Fig. 2(c) II], the fastest elements have relaxed to
Γ ¼ 0 stress and the slowest still bear most of their original
stress.
In such a state, the system has dual natures: through the

slow elements it remembers the initial, unstrained state, and
through the fast ones it has adapted to the strain state ϵ.
Decompression at this time decreases the magnitude of the
stress in the slow elements and negatively stresses the fast
elements, creating a system state ΓðλÞ in which subsets of
the elements will relax in opposing directions. The fast
elements relax first, causing the paradoxical increase in
stress over time even though all elements decrease in
energy, which scales with the square of the stress.
Eventually the slow elements turn the relaxation around,
giving rise to nonmonotonic dynamics. The memory is
clearly visible in the stress held across the relaxing
elements, ΓðλÞ, in state III of Fig. 2(c), where the timescale
of the switch in sign was imprinted by the duration of the

hold tð1Þw .

(a) (b) (c)

(d) (e) (f)

FIG. 1. Anomalous relaxation in a granular packing of glass spheres. (a) The 5 mm glass spheres used in experiment, magnified and in
the latex membrane. (b) Stress-time data for single step relaxation, where a packing is compressed to strain ϵ ¼ 0.1 and then held
statically for the remainder of the experiment. Inset illustrates the experimental protocol: arrows pointing inward (outward) correspond
to compression (decompression), and red lines denote holds at constant strain. (c) The stress decays approximately logarithmically from
the moment compression halts. These data are from (b), with stress normalized by its value at the start of the hold. (d) Stress-time data for

two-step relaxation. (e) The stress of two-step relaxation for three different tð1Þw , with turnaround time marked by arrows. (f) The

turnaround time tp scales approximately linearly with tð1Þw , for constant Δϵð1Þ.
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Casting the nonmonotonic relaxation of the granular
packing within the DRT framework shows that the storage
capacity of memories should be larger than 2. Specifically,
by appending a small strain step in the original (positive)
direction, we can create three steps of relaxation in a
simulated system [Fig. 2(b)]. Again, the memory is
manifest in ΓðλÞ of state V in Fig. 2(c), where the
population of relaxing elements has been split into three
counterrelaxing contingents.
Guided by the simulated system, we find three-step

relaxation—the first observed in any disordered system, to
the best of our knowledge—in our packings by adding a
small compression step Δϵð2Þ in the forward direction, after
waiting time tð1Þw at ϵ and then tð2Þw at ϵ − Δϵð1Þ [Fig. 3(a)].
The resulting stress during relaxation undulates back and
forth without any intervention: it decreases, increases, and
then decreases again over timescales imprinted during the
loading process. After fixing the strain state for the final
hold, nothing is done to the granular system to prompt the
nonmonotonicity; thus at the start of the hold the packing is

in a state that “knows” to turn around in stress after 4 sec
and then again some 90 sec later.
The DRT model with the AOI distribution yields a

functional form for the nonmonotonic relaxation: a sum of
alternating logarithms, staggered in time according to the
start of the prior strain steps [4] [see Figs. 4(a), 4(b)].
However, we find a correction is necessary to achieve
reasonable fits to the two- and three-step relaxation data
(Fig. 4). Specifically, we find that the wait times inside the
logarithms need to be multiplied by a parameter C > 1.
This does not arise from the model (where C ¼ 1) and
indicates deficiency in its descriptive power. Importantly,
only a significant modification to the model could scale the

waiting timescales tðiÞw in this way; changes to PðλÞ or the
excitation upon compression Δ do not rescale tðiÞw [18].
C > 1 was also necessary to fit the two-step relaxation in
Ref. [4], though no attention was called to it, presumably

(a)

(b)

(c)

FIG. 2. The different relaxation times framework (DRT) with
the Amir-Oreg-Imry distribution of relaxation rates (AOI).
(a) Simulated stress-time data for two-step relaxation. Inset:
The relaxation from the start of the final hold. (b) Simulated data
for three-step relaxation. Inset: The relaxation from the start of the
final hold. In (a) and (b) the dashed line shows the relaxation of
fðtÞ without the extra strain step Δϵð1Þ and Δϵð2Þ, respectively.
(c) The state of the system ΓðλÞ at various points in time, shown
as the stress held by each element ordered from slowest (dark,
left) to fastest (light, right). The time of the states are marked in
(a) and (b) as Roman numerals I–V. The arrows show the
direction and qualitative magnitude of relaxation. The scale of
ΓðλÞ is relative to the stress in each element in state I.

(a)

(b)

FIG. 3. Three-step relaxation of glass beads. (a) Stress during
the final hold of three-step relaxation, rescaled by its value at the
start. Inset: Stress-time data for the various stages of relaxation,

showing the two wait times tð1Þw and tð2Þw before the final hold.

(b) Varying tð1Þw while holding the rest of the driving protocol
constant shifts the time of the second turnaround in stress.
Memories are thus played out in the reverse order from which
they were stored during driving.
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because C was close to unity. We find that three-step
relaxation data significantly increases the discrepancy
between the AOI DRT prediction and the experimental
results, with fitted C values often an order of magnitude
larger than the model allows [Fig. 4(c)].
We conjecture about C > 1 based on observations of

discrete events that occur during the relaxation of a granular
packing. During such events, the stress or its derivative
suddenly change in magnitude. These events appear to be
the same local restructuring events that constitute plastic
deformation under continued compression [Fig. 1(b), and
[26]]. In many cases, one of which is shown in Fig. 5(a), an
event renews fast timescale relaxation late into a static hold.
In terms of the DRT framework, the event effectively
“rejuvenated” faster relaxing elements which had long
since adapted to the current strain state. This is suggestive
of crosstalk between the relaxing elements, occurring in
discrete steps during events such as the one shown and
ostensibly continuously during the gradual flow of the
granular packing. That the renewed relaxation is approx-
imately logarithmic over more than 2 orders of magnitude
in time shows the crosstalk redistributed stress to the fast
elements nearly uniformly.
A simple form of crosstalk between elements can be

incorporated into the model through an effective diffusion
of stress in ΓðλÞ. The diffusion is included as a Laplacian in
log λ space, scaled by a coefficient D. Implemented in this
way, all relaxation curves [Fig. 5(b)] are fit by the same

series of logarithms as in Fig. 4(a), and the fitting parameter
C grows from 1 in the absence of diffusion to as large as 3

for the specific (tð1Þw , Δϵð1Þ) two-step protocol simulated.
With faster stress diffusion, the value of C decreases until
eventually the nonmonotonicity vanishes.
The diffusion of stress between relaxers lies in the same

vein as modifications to DRTwhere the relaxation rates can
evolve in time [27]. It offers a means to incorporate
coupling between elements and to venture into the gulf
between parallel and sequential models of relaxation (e.g.,
Refs. [28–30]). However, we also find that this implemen-
tation of diffusion modifies single step relaxation away
from logarithmic at large timescales, and preliminary
sweeps of three-step relaxation did not lead to values of
C much greater than 2.
In this work, the seemingly paradoxical behavior of a

nonmonotonically relaxing disordered system has been
investigated in a new guise: a granular packing of glass
spheres. The general DRT model, with the AOI distribution
of relaxation rates, was used to explain two-step relaxation
and predict three-step relaxation before exposing its own
deficiency in the fitting function for the stress relaxation.
Three-step relaxation experiments thus present the most
stringent test to date for models of anomalous relaxation,
and offer unique insight to the dynamics of far-from-
equilibrium systems.

(a)

(b)

(c)

FIG. 4. Fitting multistep relaxation data to the form predicted
by the model. (a) An example of two-step relaxation data fitted to
the form predicted by the model (C ¼ 1) and to a form where C is
allowed to vary. (b) The same, for an example of three-step
relaxation. (c) The best-fit values of the parameter C across all
two- and three-step relaxation experiments. The dashed line,
C ¼ 1, represents DRT with the AOI distribution.

(a)

(b)

FIG. 5. Crosstalk between elements in the model. (a) A sudden
relaxation event late into one of the experiments (left panel, at
t ¼ 277.22 sec) leads to a renewal of logarithmic decay in stress
(right panel). In the framework of DRT, this occurs as a renewal
of the fastest relaxing elements. (b) Simulated two-step relaxation
where the driving protocol is held constant and diffusion between
elements is varied. The fitting function is the same as in Fig. 4(a).
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