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In the context of recent experimental observations of an unexpectedly large thermal Hall conductivity,
κH , in insulating La2CuO4 (LCO) and SrTiO3 (STO), we theoretically explore conditions under which
acoustic phonons can give rise to such a large κH . Both the intrinsic and extrinsic contributions to κH are
large in proportion to the dielectric constant, ϵ, and the “flexoelectric” coupling, F. While the intrinsic
contribution is still orders of magnitude smaller than the observed effect, an extrinsic contribution
proportional to the phonon mean-free path appears likely to account for the observations, at least in STO.
We predict a larger intrinsic κH in certain insulating perovskites.
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Introduction.—While it is well known that “neutral”
excitations in solids, including phonons and other collec-
tive modes, induce some charge motion, it is intuitively
clear that this is in some sense a “small” effect. In
particular, this suggests that the coupling of such modes
to magnetic fields is generically weak, and consequently
that their contribution to the Hall component of the thermal
conductivity tensor, κH, is relatively small. This argument is
assumed implicitly when the ratio of κH to the Hall
conductivity is used to test the Weidemann-Franz law in
metals. It is also why the recent observation of a large κH in
La2CuO4 (LCO) [1], an insulating cuprate, generated so
much interest [2–5]. Moreover, an anomalous contribution
to κH of smaller but still comparable magnitude has been
identified in the doped material, La2−xSrxCuO4 (LSCO),
for a range of 0 ≤ x < 0.19 comprising much of the “high
temperature” superconducting range of doping. Still more
recently, a comparably large κH has been found in the
nearly ferroelectric insulator SrTiO3 (STO) [6].
In this Letter we analyze the contribution of phonons to

κH at temperatures small compared to the Debye temper-
ature, so as to identify conditions under which it can be
larger than expected on the basis of dimensional analysis.
Naively, κH is small compared to the longitudinal response,
κL, for two reasons: (i) κH is small in proportion to B=B0

where B is the applied field, and B0 ≡ ϕ0=a2 ∼ 104 T is the
magnetic field corresponding to one quantum of flux
(ϕ0 ¼ 2πℏc=e) per unit cell cross-sectional area, a2. (ii) κL
is large in proportion to l=a, the ratio of the phonon mean
free path to the lattice constant. However, especially in the
context of STO, we show that κH is enhanced by a factor
proportional to the dielectric constant, ϵ, times the flexo-
electric coupling F (defined below). Moreover, we find that
there is an extrinsic contribution to κH that—in common
with κL—is proportional to l. A combination of these
effects is the likely explanation of the large κH observed in

STO; we speculate that they are responsible for the
anomalous thermal Hall response in the cuprates, as well.
To be explicit, at low temperatures in an insulator, the

dominant heat carriers are the acoustic phonons. We can
express the thermal conductivity tensor in terms of the
thermal diffusivity D as

κij ¼ Cv Dij ð1Þ

where i; j ¼ x, y, Cv ¼ ð2π2=5ÞðT=ℏv1Þ3 is the specific
heat per unit volume, v1 is an appropriate average of the
sound speed over polarizations and directions of propaga-
tion, and we will use units in which kB ¼ 1. As is well
known, the longitudinal piece of D is DL ≡Dxx ¼ Dyy ¼
ð1=3Þv2l where v2 is a slightly different average of the
sound speed [7]. In the following, we will focus on DH ≡
ð1=2ÞðDxy −DyxÞ [8]. Here we have assumed B ¼ Bẑ and
assumed rotational symmetry at low energies for simplicity;
our results will be qualitatively unchanged in lower
symmetry situations.
Effective field theory.—The low energy dynamics in a

nearly ferroelectric insulator is described by the continuum
Lagrangian density L ¼ L0 þ Lint þ LP in terms of the
vector fields u and P, which represent the local acoustic
displacement and the dipole density respectively.
L0 is the bare Lagrangian of the acoustic modes

L0 ¼
ρ

2
_u2 −

K1

2
ð∇uÞ2 − K2

2
ð∇ · uÞ2 þ � � � ð2Þ

where ρ is the mass density, andKa the elastic moduli. Here
and below “� � �” refers to higher derivative terms.
Near ferroelectric quantum criticality [9], while there is

no net dipole density hPi, it is essential to include a
fluctuating dipole order parameter P which arises from a
combination of all the infrared active phonon modes. To
leading order
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LP ¼ −
P2

2χϵ0
þ � � � ð3Þ

where χ ≡ ϵ=ϵ0 − 1 is the static electric susceptibility.
Important subleading dynamical terms are discussed later
with Eq. (10).
Finally, the terms that couple the acoustic displacement

to the dipole density take the form

Lint ¼
B
c
· ðP × _uÞ þ F1P ·∇2uþ F2P ·∇ð∇ · uÞ þ � � � :

ð4Þ
These terms are the lowest order terms (in powers of fields
and derivatives) allowed by symmetry. The couplings Fa
are known as flexoelectric couplings [10]. Their meaning is
clear from the corresponding “adiabatic” equations of
motion for P, valid so long as the acoustic displacements
are slowly varying compared to the energy scale of the
lowest optical modes [see Eq. (10)]

P
χϵ0

¼ _u ×
B
c
þ F1∇2uþ F2∇ð∇ · uÞ þ � � � : ð5Þ

The first term is the attractive force between the two poles
of a moving dipole in magnetic field. The two flexoelectric
terms represent the dipole density induced by a strain
gradient.
Intrinsic thermal Hall conductivity.—While in the

absence of scattering, κL diverges, there is a well-defined
intrinsic thermal Hall conductivity [11]. Here, we integrate
out P using Eq. (5) for an effective Lagrangian
Leff ¼ L0 þ LB, which (to linear order in B) modifies
the dynamics of the acoustic mode by

LB ¼ χϵ0
B
c
· ½F1∇2uþ F2∇ð∇ · uÞ� × _uþ � � � : ð6Þ

Although the induced LB is “small,” both due to the B
dependence and the higher derivatives on u, it is never-
theless the leading time-reversal odd term and therefore
important. In particular, it introduces a time-reversal odd
contribution to the Berry curvature ΩαðkÞ, where α labels
the phonon mode and k its momentum. The resulting
anomalous motion of the phonons generates an intrinsic
thermal Hall conductivity [11]:

κinH ¼ T
X
α

Z
d3k

ð2πℏÞ3Ω
z
αðkÞ

Z
∞

EαðkÞ=T
dξξ2

∂fBEðξÞ
∂ξ ð7Þ

where fBEðξÞ is the Bose-Einstein distribution at
energy E ¼ ξT.
A phonon effective Lagrangian of the present form has

been studied in Ref. [11]. The computation of the Berry
curvature is reproduced in the Supplemental Material [12].
Its time-reversal odd components are found to be of order

ΩðkÞ ∼ χϵ0FBvk
Kcℏ

ℏ
k2

ð8Þ

(k≡ jkj, and v≡ ffiffiffiffiffiffiffiffiffi
K=ρ

p
is the sound velocity) where K

and F are characteristic values of the couplings K1, K2 and
F1, F2 respectively. The parameter dependence of Ω is
physically intuitive: The first, dimensionless, factor is the
typical ratio between LB and L0 (in the spirit of perturba-
tion theory in B), where we have estimated ∂=∂t as vk=ℏ;
the second factor is because Ω is defined with two k
derivatives times ℏ. The same kind of reasoning yields the
estimate

κinH
κL

∼
χϵ0FBT
Kcℏ

vℏ
Tl

; ð9Þ

where the second dimensionless factor is because κL, given
below Eq. (1), scales with l. This analysis also implies
κinH ∝ T3 as κL does [11].
In a nearly ferroelectric material, there is a softened

optical phonon branch w that contributes dominantly to P
[9]. At temperatures comparable to or above the optical
phonon gap, the dipole density P ¼ ρew þ � � �, where ρe is
roughly the charge on the positive ions per unit cell, and
“� � �” includes contributions from the flexoelectric effect
Eq. (5) as well as possibly higher optical phonons. In this
case, one must include the heat carried by w. The effective
Lagrangian should include the extra terms

−
ρ0

2ℏ2
Δ2

TOw
2 þ ρ0

2
_w2 −

K0
1

2
ð∇wÞ2 − K0

2

2
ð∇ · wÞ2 þ � � �

þ B
c
· ðρew × _uÞ þB

c
· ðρ0ew × _wÞ þ � � � ð10Þ

where ΔTO is the transverse optical phonon energy and the
“� � �” includes the long-range Coulomb interaction [13,14]
that causes an upward shift of the longitudinal optical
phonon energy. Compared to the acoustic phonons, while
the thermally excitedw phonons are fewer in number due to
the gap, their couplings toB are larger in the sense that they
involve fewer derivatives than in LB. Therefore, at finite
temperatures, corrections to κinH due to w should be
considered. The details of both the u and the w contribu-
tions to κinH are presented in the Supplemental Material [12].
While the intrinsic thermal Hall effect has been con-

cretely studied, it is most often negligibly small in real
materials. As we will see later, in STO, even after an
enhancement by the low temperature electric susceptibility
χ ≈ 2 × 104 [15], κinH is still 10−4 smaller than the observed
value. We will however predict candidate materials in
which this intrinsic effect might be sufficiently large for
observation.
Extrinsic thermal Hall conductivity.—Skew scattering

plays an important role in the Hall conductivity σH, most
notably for its linear in l contribution [16–19]. Now we
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show there is a parallel effect in the phonon thermal
Hall conductivity κH, under appropriate, but unparallel,
conditions.
There are two origins of time-reversal oddness during a

scattering event. The first is directly associated with the
defect off which the particle scatters, and second the Berry
curvature effects on the kinetics of the particle itself. The
former is the mechanism responsible for the l linear
contribution to the electronic σH [19]. Here for phonon
κH, we focus on the latter, i.e., Berry curvature induced
skew scattering, primarily because in STO there is no
evidence of magnetic defects.
We assume dilute defects that scatter phonons strongly.

To understand the importance of this assumption, first
recall the opposite case of weak scattering. In this case, the
disorder averaged ðΔHÞ2 is a small parameter, whereΔH is
the modification of Hamiltonian density by the disorder. As
a consequence of Fermi’s golden rule, the typical scattered
angle at each event, Δk̂, and the inverse of the mean free
path due to accumulated mild events, 1=l, are both of

smallness ðΔHÞ2. Since Fermi’s golden rule is manifestly
time-reversal even, skew scattering only happens at higher

orders in ΔH, which would be ðΔHÞ4 ∼ 1=l2 if the time-
reversal oddness is solely due to the particle but not the
defect. This is smaller than the nonskew scatterings by 1=l;
as a consequence, in electronic systems [19], the contri-
bution of Berry curvature induced skew scattering to σH
does not scale with l. [20] On the other hand, for strong
scattering, Fermi’s golden rule does not apply. The typical
scattered angle Δk̂ at an event is of order π, and the mean
free path l is about the actual spacing between the defects;
neither scales with the indefinitely large ΔH. Thus, the
Berry curvature induced skew scattering scales as 1=l
along with nonskew scattering. For phonons specifically, a
smoking gun for strong scattering is that l approaches a
finite constant as T → 0. (This is “boundarylike” scattering
[7,21–23], which we take to be strong and approximately
independent of the phonon energy at B ¼ 0.) This will be
associated with STO phenomenology later.
With this physical picture in mind, we can write down a

linearized Boltzmann equation describing phonon transport
in the presence of a static temperature gradient, including
an ansatz for the Berry curvature induced skew scattering
with dimensionless strength A:

vk̂ ·∇δT
∂fBEðξÞ

∂T ¼ −
δfðkÞ þ δ0fðkÞ

τ

þ
Z
k0¼k

d2k̂0
A
ℏτ

ΩðkÞ · ðk×k0Þ · δfðk0Þ

× ½1þ 2fBEðξÞ�: ð11Þ

Here we separated the distribution f ¼ fBE þ δf þ δ0f,
where δf is of smallness ∇δT, and δ0f of smallness B∇δT,
and kept ∇δT and B each to linear order; τ ¼ l=v is the

relaxation time, and ξ≡ vk=T. In writing the skew scatter-
ing ansatz, for simplicity we have assumed it is dominated
by elastic single phonon scattering, whose full collision
kernel is

Z
d3k0δðvk − vk0ÞfWk0→kfðk0Þ½1þ fðkÞ�

−Wk→k0fðkÞ½1þ fðk0Þ�g: ð12Þ

Time reversal transformation requires Wk0→kðBÞ ¼
W−k→−k0 ð−BÞ in the scattering probability. The zeroth
order in B nonskew scattering contributes to the relaxation
time approximation (among other multiphonon processes),
while the linear in B, Berry curvature induced, skew
scattering is approximated by our ansatz in Eq. (11).
Importantly, the dimensionless parameter A approaches a
constant at small k, as we will justify later.
The Boltzmann equation Eq. (11) is easily solved by

matching orders in B:

δfðkÞ¼lk̂ ·∇δT
ξ

T
∂fBEðξÞ

∂ξ ;

δ0fðkÞ¼lA
χϵ0Fv
Kℏ

B
c
·
k×∇δT

3
·
ξ

T
∂fBEðξÞ

∂ξ ½1þ2fBEðξÞ�;

ð13Þ

where we have used Eq. (8) for Ω, with possible order
1 factors absorbed into A. We can then substitute these
solutions into the heat current J ¼ R ½d3k=ð2πℏÞ3� ×
vk̂vk½δfðkÞ þ δ0fðkÞ� and match with J ¼ κLð−∇δTÞ þ
κHð−∇δTÞ × ẑ to identify κL and κH, which are associated
with δf and δ0f, respectively. At this point, we shall restore
the fact that there are three acoustic modes, hence a
multiplicity of 3 for κL and a multiplicity of 9 for κH
[the extra 3 comes from

P
α0 δfα0 ðk0Þ in the collision]. This

leads to κL given below Eq. (1), and

κexH ∼ lA
�
T
ℏv

�
3

T
χϵ0FBv
Kcℏ

×
4π

ð2πÞ3
Z

∞

0

dξξ5
−∂fBEðξÞ

∂ξ ½1þ 2fBEðξÞ�: ð14Þ

The integral can be readily performed, and the result is most
conveniently presented as the ratio

κexH
κL

∼ 5A
χϵ0FBT
Kcℏ

: ð15Þ

This is our principal result for the extrinsic thermal Hall
effect. Since κL ∝ T3, we predict κexH ∝ T4. Compared to
the intrinsic effect Eq. (9), we have an enhancement by
5ATl=vℏ. We will see this linear in l enhancement (with a
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phenomenological parameter A of order 1), together with
the large χ, reproduces the observed large κH in STO.
It remains to justify the claim that A approaches a

constant at low energies, which is crucial for the T4 scaling
of κexH . Note that the dimensionless factor AΩ · ðk × k0Þ=ℏ
in our ansatz Eq. (11) is the time reversal odd modification
to the scattering probability from k̂0 to k̂. It is controlled by
the typical ratio between LB and L0, with the extra ∂=∂t in
LB estimated as vk=ℏ. Importantly, this ∂=∂t should not be
estimated as ΔH=ℏ even though we are considering it
during the course of a scattering event, because as we
explained before, in strong scattering events no scattering
angle would scale with the indefinitely large ΔH. Hence
AΩ · ðk × k0Þ=ℏ scales as k, and therefore, combined with
Eq. (8), A approaches a constant, whose value is deter-
mined by but does not scale with ΔH.
Finally, there is another extrinsic contribution to Hall

physics, that a particle’s center of wave packet experiences
a “side jump” by Δr ∼Ω × Δk during the course of
scattering [19]. This extrinsic effect, unlike the skew
scattering, does not scale with l and hence is of the same
order as κinH. The reason is intuitive: while the shifted
distance due to a modified (skew) scattering angle increases
with propagation time, the shift that happened at the instant
of scattering does not.
Discussion.—The behavior of κH in STO reported in

Ref. [6] has several important features, in addition to the
surprisingly large magnitude. First, κH is peaked at approx-
imately the same temperature, Tpeak ≈ 20 K, as κL—which
certainly suggests [6] that they both reflect heat transport by
the same set of excitations; in particular, above Tpeak,
acoustic phonons start to lose momentum by Umklapp
scattering [7,22,23]. Moreover, the recently measured κL
scales as T3 at low temperatures ≲10 K [24], and κH scales
as T4B in the same temperature range [6]. The T3 scaling of
κL implies the phonon mean free path l is roughly T
independent at low temperatures, and is extracted according
to Eq. (1) to be∼1 μm [25]. The temperature independent l
has been interpreted [6,24] as the scattering of phonons off
the twin boundaries between tetragonal domains in STO
[26]. Importantly, the scattering must not be soft refraction
and reflection, but rather some strong interaction process
with the localized degrees of freedom on the twin bounda-
ries (such as the localized dipoles [27]), in order to produce
a temperature independent l [7,21–23] comparable to the
twin boundary spacing. While a detailed scattering mecha-
nism has yet to be established, these known qualitative
aspects all support the applicability of our theory of
extrinsic thermal Hall effect.
To begin with, the observed κH ∼ T4 scaling is consistent

with that predicted in Eq. (15). Our theory reproduces the
observed magnitude of κH with the dimensionless param-
eter A of order 1. STO has a large χ ≈ 2 × 104 at low
temperatures [15]. On the other hand, the flexocouplings
take “normal” values F ≈ e=4πϵ0a [28] (where a ¼ 3.9 Å),

according to experiments [29,30] and numerics [31]. The
elastic moduli components take the usual values K ≈
1 eV=Å3 [32]. Thus, at B=c ¼ 10 T ¼ 1.5 × 10−4 ℏ=eÅ2

and T ¼ 10 K ¼ 8.6 × 10−4 eV, our theory Eq. (15) yields
κexH =κL ≈ 5A × 5 × 10−5. This matches the observed
κH=κL ∼ −10−3 at this magnetic field and temperature,
[33] if we set A ≈ 4 [34]. (The sign is inconclusive because
the componentwise values and signs of F remain unset-
tled [10].)
On the other hand, the intrinsic thermal Hall effect

Eq. (9) gives a ratio κinH=κL ≈ 2 × 10−7 for l ∼ 1 μm, much
smaller than the observed value. We estimate that the
contribution from the soft optical phonon w (with ΔTO ≈
24 K [9]) at T ¼ 10 K is less than 0.1 of that from acoustic
phonon, see Supplemental Material [12].
According to our theory, a change in the mean free path

is not expected to dramatically change κH=κL. However, if a
single crystal domain is formed (e.g., by cooling under
strain [6]), although l becomes the system size, skew
scattering ceases to happen during the transport, and hence
κH should drop to the order of κinH. This is consistent with
the negligible κH in KTaO3 (KTO) [6]. Note that l in KTO
is determined by the system size below 1 K and by soft
impurity scattering at higher temperatures [35], and indeed
neither case produces an l linear κexH according to our
theory.
While the intrinsic κinH is negligible in STO even with the

large χ ≈ 2 × 104, we predict κinH to be observable in other
systems, in particular a large class of perovskites [10],
including Ba1−xSrxTiO3 (BSTO) and PMN-PT, which not
only have similarly large χ but also large flexocouplings F
hundreds of times of the “normal” value e=4πϵ0a.
Furthermore, if some of these materials form structural
domains at low temperatures, their κexH should be signifi-
cantly larger than in STO.
Finally, we turn to the observations in LCO and LSCO.

In Ref. [1], after subtracting off a quasiparticle contribution
(inferred from σH using the Weidemann-Franz law), the
remaining “anomalous” contribution is found to decrease
smoothly with hole doping x, extending to values of x
greater than the “optimal doping” that maximizes Tc;
indeed, it is suggested it vanishes only for x > p⋆, an
independently determined (material dependent) crossover
concentration that is roughly p⋆ ≈ 0.19 in LSCO. In the
range 0 ≤ x < p⋆, the system evolves from an antiferro-
magnetically ordered insulator through an insulating spin-
glass phase and over much of the superconducting dome.
The only low energy excitations that exist over this entire
range of doping are the acoustic phonons.
While in LCO, which is far from ferroelectricity, the

electric susceptibility χ ≈ 30 [36] is much smaller than in
nearly ferroelectric materials such as STO, the flexocou-
plings F are unknown and could potentially be larger as in
BSTO. Moreover, in LSCO, there is a T ¼ 0 structural
transition (from orthorhombic to tetragonal) at x ≈ p⋆,
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which might be significant in the context of a phonon skew
scattering mechanism. The skew scattering might also
originate from magnetic defects, the existence of which
is plausible given that LCO is an antiferromagnet, and that
spin-glass order persists up to x ≈ p⋆ [37] (albeit at lower T
and larger B than those in Ref. [1]). On the other hand, in
LCO at the lowest T probed so far, κL (as well as κH) drops
roughly linearly in T; this is not the behavior expected in
the transport regime we have explored, proving that the
present analysis is not directly applicable. Nonetheless, the
fact that a phonon mechanism can produce a thermal Hall
response of the requisite size in STO leads us to conjecture
that the same physical considerations are at play in LCO
as well.
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Note added.—Recently, Ref. [38] reported a comparably
large thermal Hall effect in LCO when the thermal current
is oriented perpendicular to the Cu-O planes. As noted by
the authors, this observation of isotropy establishes beyond
reasonable doubt that the thermal Hall current in LCO is
carried by acoustic phonons.
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Zatko, M. Lizaire, F. Laliberté, A. Gourgout, J.-S. Zhou, S.
Pyon et al., Nature (London) 571, 376 (2019).

[2] R. Samajdar, S. Chatterjee, S. Sachdev, and M. S. Scheurer,
Phys. Rev. B 99, 165126 (2019).

[3] R. Samajdar, M. S. Scheurer, S. Chatterjee, H. Guo, C. Xu,
and S. Sachdev, Nat. Phys. 15, 1290 (2019).

[4] J. H. Han, J.-H. Park, and P. A. Lee, Phys. Rev. B 99,
205157 (2019).

[5] Z.-X. Li and D.-H. Lee, arXiv:1905.04248.
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