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We study the magnetoelectric and electrocaloric response of strain-engineered, multiferroic SrMnO3,
using a phenomenological Landau theory with all parameters obtained from first-principles-based
calculations. This allows us to make realistic semiquantitative and materials-specific predictions about
the magnitude of the corresponding effects. We find that in the vicinity of a tetracritical point, where
magnetic and ferroelectric phase boundaries intersect, an electric field has a huge effect on the
antiferromagnetic order, corresponding to a magnetoelectric response several orders of magnitude larger
than in conventional linear magnetoelectrics. Furthermore, the strong magnetoelectric coupling leads to a
magnetic, cross-caloric contribution to the electrocaloric effect, which increases the overall caloric
response by about 60%. This opens up new potential applications of antiferromagnetic multiferroics in the
context of environmentally friendly solid state cooling technologies.
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Caloric effects in ferroic materials, where application or
removal of external fields (magnetic, electric, or stress) can
result in significant temperature changes, potentially allow
for the development of clean and energy-efficient cooling
technologies [1,2]. More recently, there has been growing
interest in so-called multicaloric effects [3–7], where more
than one type of caloric effect can occur simultaneously,
possibly allowing to further optimize the total caloric
response. Thereby, most specific studies have been focus-
ing on combining either electrocaloric or magnetocaloric
with elastocaloric effects, using applied stress or strain as
an additional control parameter to enhance the overall
caloric response [8–10] and/or to reduce irreversibility
problems [11–14]. Recent work also discussed the impor-
tance of magnetism in stabilizing relevant ferroelectric
phases in the context of the electrocaloric effect [15].
In contrast, multicaloric effects in (single phase) multi-

ferroic materials with coexisting magnetic and ferroelectric
(FE) orders have remained relatively unexplored [2,3],
perhaps due to challenges in finding suitable materials.
While such materials have received much attention, not
only because of a broad fundamental interest, but also due
to promises of technological applications [16,17], their
practical usefulness is often hindered by low ordering
temperatures or weak magnetoelectric (ME) coupling.
Additionally, most magnetic ferroelectrics are in fact
antiferromagnetic (AFM), which restricts their potential
applications, since AFM order does not couple to magnetic
fields. Here we show that an AFM multiferroic can,
nevertheless, exhibit a large cross-caloric magnetic con-
tribution to the electrocaloric effect (ECE) [18].
Since caloric effects are generally largest near the

relevant phase transitions, a strong cross-caloric effect

can be expected near a so-called tetracritical point (TCP)
[19], where two ferroic critical temperatures coincide. Such
a TCP was recently predicted in strained SrMnO3 [20]; its
existence can also be inferred from previous theoretical
[21] and experimental [22–24] work. While perovskite
structure bulk SrMnO3 is a cubic paraelectric G-type
antiferromagnet [25], it develops ferroelectricity under
tensile epitaxial strain [21–24]. Thereby, the FE critical
temperature increases strongly with strain [20], while the
AFM Néel temperature is less affected, resulting in an
intersection of the FE and AFM phase boundaries at a
certain strain, and thus a TCP. Furthermore, since the Mn
cation carries the magnetic moment and also takes part in
the FE distortion, SrMnO3 is expected to exhibit strong ME
coupling, which is also implied by reports of a particularly
strong spin-phonon coupling [26,27].
In this work, we explore ME coupling and cross-caloric

response in SrMnO3 by constructing a Landau-type model,
considering all relevant magnetic and FE order parameters.
We extract all parameters entering the free energy from
first-principles-based calculations, allowing a realistic
materials-specific description. We then apply the model
to study ME coupling phenomena around the TCP in
multiferroic SrMnO3. We show that an electric field has a
strong effect on the AFM order, shifting its critical temper-
ature and increasing the corresponding order parameter,
thereby drastically changing the entropy of the magnetic
subsystem. This results in a huge magnetic cross-caloric
contribution to the ECE, which is increased by about 60%
due to the ME coupling.
SrMnO3 under epitaxial strain is predicted to show a

number of different AFM phases, including G, C, and A
type [28], and possibly also ferromagnetic (FM) order at
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large strains [20,21]. While there are three degenerate q
vectors corresponding to each of the A- and C-type AFM
orders within cubic symmetry, this degeneracy is broken in
the strained case, and only q ¼ πð0; 0; 1=cÞ (for A) and
q ¼ πð1=a; 0; 1=cÞ (for C) appear in the phase diagram of
SrMnO3 (in addition to FM and G) [20]. Each magnetic
order parameter can couple to the polar order P that
emerges under strain. Hence, we consider a Landau free
energy of the form

F q ¼
1

2
aPðT; ηÞP2 þ bP

4
P4 þ 1

2
aqðT; ηÞM2

q þ
bq
4
M4

q

þ λqðηÞ
2

M2
qP2 − EP; ð1Þ

for each magnetic order parameter Mq ¼
ð1=NÞPN

i eiq·RihSii, where hSii is the thermodynamic
average of the normalized spin at site Ri, and N is the
number of spins. The strain and temperature dependence
enters in the quadratic coefficients as aP ¼ αPðT − TP

0 Þ þ
cPη and aq ¼ αqðT − Tq

0Þ þ cqη. At each strain η, temper-
ature T, and electric fieldE, the free energyF q is minimized
with respect to P andMq, and the free energy is determined
from F ¼ minqðminMq;PF qÞ. The q which corresponds to
the lowest free energy defines the equilibrium magnetic
phase at that point in the phase diagram.
All parameters in Eq. (1) were determined from density

functional theory (DFT) calculations and DFT-based effec-
tive Hamiltonian simulations [20,29]. The magnetic param-
eters and biquadratic ME coupling coefficients λq were
obtained by mapping DFT total energy calculations on a
Heisenberg Hamiltonian and extracting exchange inter-
actions as functions of strain and FE distortions. The FE
parameters were determined from the strain-dependent
transition temperature and saturation polarization obtained
from first-principles-based effective Hamiltonians [20], and
from DFT-calculated elastic and electrostrictive constants.
We first consider the case without ME coupling and zero

applied field and minimize the free energy in Eq. (1) for
temperatures 0 ≤ T ≤ 600 K and strains 0 ≤ η ≤ 5%.
This results in the phase diagram shown in Fig. 1, which
largely agrees with our previous study using microscopic
first-principles-based Hamiltonians [20,40]. For small T
and η, there is a G-AFM paraelectric (PE) phase, while at
approximately 2% strain there is a transition into a FE
region and also a change to C-AFM order. For large strain
and low temperatures, an A-AFM FE region appears. We
note that the ferromagnetism that has been predicted for
large strains is only stabilized due to its coupling to the FE
order [20], which is not yet included in our free energy.
Most notably, the phase diagram in Fig. 1 reveals a TCP,
where the magnetic and FE critical temperatures coincide,
within the region with C-AFM order at ηtcp ¼ 2.63% and
T tcp ¼ 162 K. As also discussed in Ref. [20], the calculated

magnetic transition temperatures as function of strain agree
well with those measured by Maurel et al. [41], indicating
that our calculations yield a realistic semiquantitative
description of the ferroic phase diagram of SrMnO3.
Next, we include the strain-dependent ME coupling

parameters, λq. We find that the lowest order biquadratic
coupling in Eq. (1) is insufficient to describe the variation
of the exchange couplings for large polarization [29],
which occurs in the region of the phase diagram with
large strain and low temperatures. A satisfactory descrip-
tion of this region would require coupling terms of higher
order in P, which, however, requires additional higher order
terms to guarantee stable, physical solutions, and thus more
parameters in the free energy. In the following, we therefore
focus on the part of the phase diagram which is most
interesting in the present context, i.e., the region around the
TCP, where both order parameters are small [42].
For the C-AFM order, relevant around the TCP, we find a

negative ME coupling, which varies relatively weakly with
strain. Previously, a positive ME coupling coefficient λG
has been found for cubic Sr1−xBaxMnO3 [44,45], meaning
that G-AFM and FE order couple unfavorably. This is
consistent with our results [29]. However, we also find that
the coupling coefficients change with magnetic order and
strain.
The zero field phase diagram for the region 2.2% ≤ η ≤

3.0% and 100 K ≤ T ≤ 300 K, now including ME cou-
pling, is shown in the inset of Fig. 1. One drastic effect of
the coupling is that it suppresses the A-AFM region. This is
because λA is found to be strongly positive and A-AFM
only appears in the FE region, where it is highly unfavored
by the coupling, while C-AFM is favored. In contrast, the
coupling does not alter the position of the TCP, since both

FIG. 1. Ferroic phase diagram of SrMnO3 at zero applied field
without ME coupling (λq ¼ 0). The inset shows the effect of
nonzero ME coupling around the TCP. The dashed lines in the
inset indicate the FE-PE and the C-paramagnetic (PM) phase
boundaries with λq ¼ 0.

PHYSICAL REVIEW LETTERS 124, 167201 (2020)

167201-2



MC and P, and thus the effect of the coupling term, vanish
at this point. Away from the TCP, the upper of the two
ordering temperatures also remains unaltered, while the
lower one is increased by the negative ME coupling. This
can also be seen from Figs. 2(a) and 2(b), which show the
temperature dependence of the FE polarization P and the
C-AFM order parameterMC, both with (black) and without
(blue) ME coupling, for three different strain values. At
η ¼ 2.80% (where TC

c < TP
c ), TP

c is unaffected, while the
magnetic order changes from A to C with an increase in
ordering temperature from TA

c ¼ 170 to TC
c ¼ 174 K.

Additionally, the coupling enhances the polarization below
TC
c producing a kink in PðTÞ. Analogous behavior, but with

the roles of P andMC exchanged, is observed at η ¼ 2.50%
(where TC

c > TP
c ). Here, the coupling does not alter TC

c ,
while it shifts TP

c from 127 to 139 K, and produces a kink in
MCðTÞ at TP

c . At ηtcp ¼ 2.63%, the coinciding critical
temperatures are unaltered by the coupling term, however,
below T tcp ¼ 162 K both order parameters are enhanced
compared to the case with λq ¼ 0. This behavior is

consistent with the general phenomenological theory out-
lined in Ref. [7], where it was also shown that both
transitions remain second order if λ2q < bqbP (or if
λq > 0). According to our results this condition is fulfilled
for every magnetic order and strain considered.
The zero-field electric susceptibility χE ¼ ðdP=dEÞjE¼0

(for λq ≠ 0), is also plotted in Fig. 2(a). As expected, this
susceptibility diverges at the FE transitions. Additionally,
the ME susceptibility

χME ¼ dMq

dE

�
�
�
�
E¼0

¼ −
λqP

bqMq
χE ð2Þ

is plotted in Fig. 2(b). This quantity describes the magnetic
response to an applied electric field and is nonzero only in
the multiferroic regions of the phase diagram (where
Mq ≠ 0 and P ≠ 0). The ME susceptibility then diverges
at the lower of the two transition temperatures, either
because χE diverges if the FE transition is lower, or because
Mq → 0 if the magnetic transition is lower. The divergence
is particularly pronounced at ηtcp, where χE diverges
simultaneously as Mq → 0, causing χME to diverge as
ðTc − TÞ−1 instead of ðTc − TÞ−1=2 when the relevant
critical temperature Tc is approached from below [46].
We now discuss the effect of applying an electric field. In

Figs. 2(c)–2(d), the FE and magnetic order parameters are
plotted as functions of temperature for the previously
discussed strain values and various applied electric fields.
As expected, an electric field induces a nonzero electric
polarization at all temperatures, decreasing towards high T,
and thus removes the second order FE transition. The effect
on the magnetic order parameter is markedly different.
While the electric field enhances alsoMC, because λC < 0,
the magnetic order parameter still shows a second order
transition, and is identically zero above the corresponding
transition temperature. The magnetic transition temperature
is, however, electric field dependent and the inset of
Fig. 2(d) shows TC

c as a function of applied electric field.
The increase in TC

c with E appears close to linear, and an
applied field of 100 kV=cm increases TC

c by 2.1 K for
η ¼ 2.5%, by 5.3 K for ηtcp ¼ 2.63%, and by 3.5 K for
η ¼ 2.8%. The largest effect of the electric field on TC

c is
thus found at ηtcp.
We note that SrMnO3 is not a linear ME material.

Nevertheless, to get a better idea of the magnitude of the
electric field effect on MC, one can see from Fig. 2(d) that
an electric field of 50 kV=cm altersMC by about 0.15 at the
TCP. Considering a Mn magnetic moment of 3μB, one can
estimate an effective ME coefficient of αeff ¼ ðΔM=ΔEÞ ¼
15 × 10−3 Ω−1, which is 4 orders of magnitude larger than
that found in conventional linear magnetoelectrics such as
Cr2O3 [47,48].
Based on the electric field response of both FE and

magnetic order parameters, we now address the ECE in

(a)

(b)

(c)

(d)

FIG. 2. (a) and (b) Order parameters (black, left) and suscep-
tibilities (red, right) as functions of temperature for strains of
2.5% (solid line), 2.63% (dashed line), and 2.8% (dashed dotted
line). (a) Electric polarization and susceptibility, (b) magnetic
order parameter, and ME susceptibility. Order parameters for zero
ME coupling are shown in blue. (c) and (d) Temperature
dependence of FE (c) and magnetic (d) order parameters for
strains of 2.5% (red solid lines), 2.63% (green dashed lines), and
2.8% (blue dashed dotted lines) with applied electric fields of 0,
50, 100, 150, and 200 kV=cm. The darker colors correspond to
larger fields. The inset in (d) shows TC

c as a function of E, with
color coding corresponding to the main plot.
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SrMnO3. Because of the negative ME coupling, an applied
electric field has an ordering tendency on both the FE and
magnetic subsystems, and hence reduces the entropy in
both. This will result in a magnetic contribution to the ECE,
referred to as cross caloric [7]. The caloric response is
quantified by the isothermal entropy change under field
application or removal. From the free energy in Eq. (1), the
entropy at a given temperature and field E is SðT; EÞ ¼
−ð∂F=∂TÞE, while the entropy changewhen increasing the
field from 0 to E is [7,29]ΔSðT; EÞ ¼ SðT; EÞ − SðT; 0Þ ¼
− 1

2
αP½P2ðT; EÞ − P2ðT; 0Þ� − 1

2
αq½M2

qðT; EÞ −M2
qðT; 0Þ�.

Here, the first term is the usual ECE, while the second
term is the magnetic contribution, i.e., the cross-caloric
response.
Figures 3(a)–3(c) show the isothermal entropy change in

SrMnO3 as a function of temperature for an applied field of
150 kV=cm, at the three strain values discussed previously.
The total entropy change has been decomposed in magnetic
and electric contributions. The total caloric response
exhibits features (peaks and/or kinks) at all critical temper-
atures (with or without field). Generally, the electric
contribution is nonzero at all temperatures and peaks at

the zero field TP
c . Below, but near TC

c ðEÞ, it is enhanced
compared to the case without ME coupling. For η ¼ 2.8%
this even leads to an additional peak at TC

c ð0Þ. Hence, the
ME coupling can enhance the ECE not only by adding
the magnetic cross-caloric effect, but also by enhancing the
electric part. The magnetic contribution vanishes above
TC
c ðEÞ, but rises sharply between TC

c ðEÞ and TC
c ð0Þ,

peaking at TC
c ð0Þ, then slowly decreases again towards

lower T, except for the case of η ¼ 2.5%, where it peaks at
TP
c . This is related to the kink inMCðTÞ at this temperature

for zero field [see Fig. 2(b)]. The inset in Fig. 3(b) shows
the magnetic and electric contributions to the entropy
change at η ¼ 2.63% and temperatures 140 and 162 K,
as functions of applied electric field, illustrating an approx-
imately linear increase in the magnitude of the entropy
change with the field.
Strikingly, at all three strains, the magnetic contribution

reaches approximately 60% of the electric contribution, or
more than a third of the total entropy change. This is a result
of particular relevance, since it shows that such a giantME
cross-caloric effect can significantly increase the caloric
response suitable for solid state cooling. Furthermore, the
effect is of similar size for the three different strains,
indicating that a very careful tuning of the two critical
temperatures to coincide is not necessary. It is also
interesting that, in the case of η ¼ 2.8%, the largest total
ECE is not obtained at the FE phase transition, but at the
magnetic one. This is because it is the lower temperature
phase transition in this case and thus the two contributions
add up, while at the FE transition the magnetic contribution
vanishes.
Another instructive quantity to characterize caloric

effects is the adiabatic temperature change ΔT, which
can be estimated from the entropy change ΔS via ΔT ¼
−ðT=CphÞΔS, where Cph is the phonon specific heat,
without the contribution of the FE degrees of freedom
[29,49]. We use the temperature dependent phonon specific
heat obtained for SrMnO3 using frozen phonon calcula-
tions [29,50], which also contains contributions of the
phonon modes responsible for the ferroelectricity and
thus will slightly underestimate ΔT. The resulting ΔT is
plotted in Fig. 3(d), for the same strains as in (a)–(c), and
three different applied fields. The largest ΔT, for
E ¼ 200 kV=cm, is about 5 K. This is of the order of
magnitude needed to be technologically relevant and of
similar size as the “giant” ECE reported by Mischenko
et al. [51] for PbZr0.95Ti0.05O3, when compared at the same
applied field strength (∼4.5 K at 180 kV=cm in Ref. [51]).
Although being estimates, the temperature changes in
Fig. 3(d) show that multiferroic perovskite oxides can
indeed be of potential technological relevance within the
area of solid state cooling.
In summary, we have used a Landau theory, allowing

several magnetic order parameters to couple to a FE
polarization, to study ME coupling phenomena around

(a)

(b)

(c)

(d)

FIG. 3. The ECE as a function of temperature. (a)–(c) The
isothermal entropy change, as a field of 150 kV=cm is applied,
for strains of 2.5%, 2.63%, and 2.8%, respectively. (b) Contains
an inset showing the field dependence at T ¼ 140 (dashed) and
T ¼ 162 K (solid). The total entropy change is decomposed into
magnetic (red) and electric (blue) contributions. Additionally, the
ECE corresponding to λq ¼ 0 is shown (black line). (d) Estimates
of the adiabatic temperature changes for the same strains, and
applied electric fields of 100, 150, or 200 kV=cm.
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the TCP appearing in the strain-temperature phase diagram
of SrMnO3. Since all parameters entering the theory have
been determined from first principles DFT-based calcula-
tions, realistic materials specific predictions can be made
without experimental input. The ME coupling is found to
be enhanced at the TCP and a huge response to electric
fields is observed in the magnetic order parameter.
Investigating the ECE, we find a large cross-caloric
contribution due to the electric-field-induced magnetic
entropy change, resulting in an increase of about 60% in
the total caloric response. This provides a new way for
greatly enhancing caloric effects for solid state cooling
applications, by using multiferroic materials with coupled
magnetic and electric order parameters. It also provides a
unique example where AFM order in a multiferroic
material can be of great practical usefulness. Recent work
proving that highly strained multiferroic films of SrMnO3

can be grown [24] is promising regarding the experimental
verification of these results, while similar studies on Ba-
doped systems [44,52,53] would also be of interest. Further
insights could also be obtained by studies using other
computational methods, e.g., based on microscopic models
for coupled spin-lattice dynamics [43,54].
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and B. Dkhil, Nat. Commun. 7, 11614 (2016).
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