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While regular flat bands are good for enhancing the density of states and hence the gap, they are
detrimental to the superfluid weight. We show that the predicted nontrivial topology of the two lowest flat
bands of twisted bilayer graphene (TBLG) plays an important role in the enhancement of the superfluid
weight and hence of superconductivity. We derive the superfluid weight (phase stiffness) of the TBLG
superconducting flat bands with a uniform pairing, and show that it can be expressed as an integral of the
Fubini-Study metric of the flat bands. This mirrors results already obtained for nonzero Chern number
bands even though the TBLG flat bands have zero Chern number. We further show that the metric integral
is lower bounded by the topological C2zT Wilson loop winding number of TBLG flat bands, which renders
that the superfluid weight is also bounded by this topological index. In contrast, trivial flat bands have a
zero superfluid weight. The superfluid weight is crucial in determining the Berezinskii-Kosterlitz-Thouless
transition temperature of the superconductor. Based on the transition temperature measured in TBLG
experiments, we estimate the topological contribution of the superfluid weight in TBLG.
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The recently discovered superconducting phase in
twisted bilayer graphene has received extensive attention

]1–43 ]. The topology of the lowest two bands (per spin
and valley) of twisted bilayer graphene (TBLG) is
currently under debate [22,26–28,44]. Although theoreti-
cal models suggest a nontrivial topological number of
these bands, the experimentally measurable effects
through which one could prove or falsify the predicted
nontrivial topology are scarce. Currently, one viable
experimentally observable effect [45] predicts that the
single-particle magnetic field spectrum of a topologically
nontrivial band can cross the single-particle gap, in stark
contrast to conventional knowledge and to the in-field
spectrum of trivial bands. We here present another effect
of a set of topologically nontrivial bands observable at
zero field (of the kind present in TBLG) that appears when
these bands become superconducting. It has been shown
in Ref. [1] that the superfluid weight in the superconduct-
ing state is the sum of two terms: a conventional term,
which vanishes when the bands are perfectly flat, and a
topological term, which we will prove that it is bounded
from below by the Wilson loop winding number of the
C2zT protected topology in TBLG.
This Letter is organized as follows. First, we show that

by assuming perfectly flat bands and s wave pairing, the
superfluid weight can be written as the integral of Fubini-
Study metric over the Brillouin zone (BZ), and show that it
is lower bounded by the Wilson loop winding. Second, by
applying this result to TBLG, we estimate the topological

contribution of superfluid weight and explain the relatively
high transition temperature.
The two characterizing features of superconductors are

the zero dc resistance and Meissner effect. Both of these
properties are captured by the celebrated London equation
[46]. It tells us that the electric current in a superconductor j
is proportional to the gauge potential A under Coulomb
gauge:

ji ¼ −½Ds�ijAj; ð1Þ

in which the coefficient ½Ds�ij is called the superfluid
weight. Some spacial symmetry, such as C3z, requires it to
be isotropic in 2D. In some works, such as Ref. [47], it is
called “phase stiffness” (describing energy susceptibility
with respect to phase twists). The London equation has two
kinds of consequences. One is Meissner effect, and the
other one is the frequency dependence of ac conductance.
In 2D, the superfluid weight is also related with the
transition temperature. The phase coherence will disappear
at a temperature T ¼ Tc given by ½ℏ2DsðTcÞ=e2kBTc� ¼
ð8=πÞ (known as the Berezinskii-Kosterlitz-Thouless
[BKT] transition [48,49]), because of the creation of
vortex-antivortex pairs. Usually DsðTÞ decreases with
increasing temperature, so the transition temperature Tc

is always lower than ½πℏ2Dsð0Þ=8e2kB�. Thus a smallDs at
zero temperature leads to a low transition temperature.
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In experiments, Ds is related with ac conductance σðωÞ
[50], which can be measured by the time-domain trans-
mission spectroscopy without any contact with the sample
[51]. For example, at zero temperature, the stiffness
temperature of Bi2Sr2CaCu2O8þδ is measured to be
Tθ ¼ 55 K, and the corresponding superfluid weight is
Ds ¼ e2kBTθ=ℏ2 ¼ 1.8 × 109 H−1 [47]. As another exam-
ple, the superfluid weight of MoGe thin film is measured to
be Ds ¼ 5 × 108 H−1 [52].
In Landau-Ginzburg (LG) theory of conventional super-

conductivity, the superfluid weight is given by Ds ≈
e2ns=m� where m� is the band effective mass and ns is
the superfluid density which is temperature dependent
[46,53]. If the band is exactly flat, m� will become infinity,
and LG theory tells us the superfluid weight can be zero
even when Cooper pairing happens. We use the Bistritzer-
MacDonald (BM) model [3] to estimate the bandwidth and
the conventional contribution of superfluid weight in
TBLG. In the magic angle BM model, a lattice relaxation
(around 0.8 ∼ 0.9 in reality [54]) is needed for the flat
bands to be gapped from the higher bands, so that the
topology of the flat bands is well defined [26,28]. Around
the magic angle, the flat bands mostly lie in an energy
range jεj < W ≈ 0.5 meV [50]. Hence the effective
mass is approximately m� ≈ ℏ2K2

M=2W, where KM is the
distance between Γ and K in Moiré BZ. Thus the conven-
tional superfluid weight is ½Ds�tri ≈ e2ns=m� ≈ 2e2WN=
ℏ2ΩcK2

M ¼ 3
ffiffiffi
3

p
e2WN=4π2ℏ2, where Ωc is the area of the

Moiré unit cell, and N is the number of electrons per Moiré
unit cell. Here we assume that the superfluid density is
given by the total electron density, which is the upper limit
of ns. As an order-of-magnitude estimation, we take ν ¼
1=4 or equivalently N ¼ 2 [55], the value of superfluid
weight will be ½Ds�tri ≈ 5 × 107 H−1, and the corresponding
BKT transition temperature will not be higher than 0.6 K.
However, LG theory is valid only when the band is trivial,
as the spreading of its Wannier function has a nonzero
lower bound, therefore the estimation based on LG theory
in this paragraph is not enough [1,56,57]. As a result, we
show that even in the exactly flat band limit, as long as the
Wannier functions of the flat bands have some overlap, the
Cooper pairing may acquire nonlocal phase correlations
and thus a nonzero superfluid weight, which will give rise
to a higher transition temperature.
To obtain the contribution of nontrivial band topology

to the superfluid weight, we consider a mean-field
Bogoliubov-de-Gennes (BdG) Hamiltonian:

HBdG ¼ 1

2

X
k

Ψ†
k

�
HðkÞ − μ ΔðkÞ
Δ†ðkÞ −H�ð−kÞ þ μ

�
Ψk

þ 1

2

X
k

Tr½HðkÞ − μ�: ð2Þ

We use Ω0 to denote the ground state energy of HBdG,
which is also the free energy at zero temperature. We

substitute k → k − eA by Peierls substitution [58] when a
nonzero uniform gauge potential A is turned on, and the
free energy becomes a function of A. We can then expand
ΩðAÞ to the second order of Ai and obtain ΩðAÞ≈
Ω0 þ 1

2
V½Ds�ijAiAj, where V is the area of the sample,

and the second order coefficient ½Ds�ij is the superfluid
weight. The first order derivative ∂AΩðAÞ gives us the
electric current, which agrees with the London equation
in Eq. (1).
The free energyΩðAÞ and thus the superfluid weight can

be derived from the BdG Hamiltonian. The general
expression of the superfluid weight was first derived in
Ref. [1], and can be found in Eqs. (S18), (S19), and (S28) in
the Supplemental Material [50], Sec. II. The first term in
Eq. (S18) corresponds to the Landau-Ginzburg contribu-
tion, while Eqs. (S19) and (S28) are additional contribu-
tions due to the k dependence of the flat band wave
functions. The convensional contribution vanishes in flat
bands, but the wave function contributions Eqs. (S19) and
(S28) still exist, and can be related to the band topology as
we show below.
Before we start our discussion about TBLG, we briefly

review the superconductivity in the spin Chern insulator
with exactly flat bands studied in Ref. [1]. In this model,
HðkÞ has both spinful time reversal symmetry and sz
conservation, which allows one to define a spin Chern
number C. The order parameter ΔðkÞ ¼ isyΔ (in which sy
is the y direction spin Pauli matrix) is momentum inde-
pendent, and one can show that the superfluid weight given
by sum of Eqs. (S18), (S19), and (S28) can be reduced to
the following integral in the BZ:

½Ds�ij ¼
8e2Δ
ℏ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð1 − νÞ

p Z
d2k
ð2πÞ2 gijðkÞ; ð3Þ

where ν is the filling ratio of the spinful flat bands, and
gijðkÞ is the Fubini-Study metric evaluated from the Bloch
wave function of the spin ↑ flat band:

gijðkÞ ¼
1

2
½∂kiu

†ðkÞ∂kjuðkÞ þ ∂kju
†ðkÞ∂kiuðkÞ�

þ u†ðkÞ∂kiuðkÞu†ðkÞ∂kjuðkÞ; ð4Þ

where uðkÞ is the Bloch wave function at momentum k of
the spin up flat band. The integral of metric can be nonzero
even for topological trivial flat bands [59].
The Fubini-Study metric defines a distance on the BZ

torus: two momentum points are close to each other if their
wave functions have a large overlap [60]. The integral of
trg ¼ gxx þ gyy also corresponds to the gauge invariant
part of the “Wannier function localization functional,”
which has been studied in detail in previous research
[61,62]. The metric is also related to Berry curva-
ture through the quantum geometric tensor defined by
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Gij ¼ ∂kiu
†ðkÞ½1 − uðkÞu†ðkÞ�∂kjuðkÞ. The real part of

Gij is the metric gij and the imaginary part is the Berry
curvature. One of the most important properties ofGij is its
positive definiteness. It can be shown that for arbitrary
complex vectors fcig, the inequality

P
ij c

†
iGijcj ≥ 0

always holds [50]. If we choose cx ¼ 1 and cy ¼ i, we
will find trg ¼ gxx þ gyy ≥ −F xy; similarly, we choose
cx ¼ 1 and cy ¼ −i, and we will obtain trg ≥ F xy.
Therefore we prove that the metric is bounded by the
absolute value of curvature trg ≥ jF xyj. From the expres-
sion ofDs one can easily notice that trDs is bounded by the
spin Chern numberC. In TBLG, the (spin) Chern number is
zero, and the system is multiband, likely with more
complicated pairing symmetry. Hence a new bound or
limit (if any exists) for the superfluid weight must be
obtained.
We first generalize the result of Ref. [1] to multiband

systems with a more realistic pairing. The free fermion
HamiltonianHðkÞ is assumed to be invariant under spinful
time reversal transformation, which is represented by
T ¼ UTK, where UT is a real unitary matrix and K is
complex conjugation operator. We do not (any longer)
assume momentum independent pairing. HðkÞ is diagon-
alized by UðkÞ as εk ¼ U†ðkÞHðkÞUðkÞ where εk is a
diagonal matrix, and we assume that it has NF flat bands at
same energy. We also assume the band gap between these
flat bands and any other bands is larger than the bandwidth
of flat bands, and the interaction between the electrons. In
the following discussion we use a time reversal symmetric
pairing between Kramers pairs as follows:

ΔðkÞ ¼ ½Δ1ŨkŨ
†
k þ Δ2ð1 − ŨkŨ

†
kÞ�UT; ð5Þ

in whichΔ1;2 ∈ R because of time reversal symmetry. Here
Ũk ¼ ½u1ðkÞ; u2ðkÞ � � � uNF

ðkÞ� is the projection of UðkÞ
into these NF flat bands and uiðkÞ are the eigenvectors of
matrix HðkÞ. This ansatz implies that s wave pairing
happens between Kramers pairs and the pairing strength in
the flat bands and in all other bands are given byΔ1 andΔ2,
respectively. Therefore we have the following three impor-
tant assumptions in total: (1) the free fermion Hamiltonian
with time reversal symmetry has NF flat bands at the same
energy near the Fermi level; (2) there is a large band gap
between flat bands and other bands (in TBLG this can be
satisfied by introducing lattice relaxation, as we mentioned
earlier); (3) the pairing order parameter satisfies Eq. (5). For
flat bands with attractive interaction between Kramers
pairs, the mean field BCS theory is a good approximation
to the ground state ([50], Sec. VIII). Because of this large
band gap between flat bands and other bands, we can
project the BdG Hamiltonian into the flat bands of the free
fermion model and then derive the superfluid weight. The
result is given by

½Ds�ij¼
2e2jΔ1j

ℏ2

�
1þΔ2

Δ1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð1−νÞ

p Z
d2k
ð2πÞ2gijðkÞ ð6Þ

gijðkÞ ¼ Tr

�
1

2
ð∂kiŨ

†
k∂kjŨk þ ∂kjŨ

†
k∂kiŨkÞ

þ ðŨ†
k∂ki ŨkŨ

†
k∂kjŨkÞ

�
; ð7Þ

in which TrðXÞ ¼ PNF
n¼1ðXnnÞ stands for the trace over all

the flat band indices. Equation (7) is the generalization of
Fubini-Study metric in Eq. (4) to multiband systems, which
is also positive definite [50]. The result in Eq. (3) derived in
Ref. [1] is a special case of our result in Eq. (6) when the
time reversal transformation is represented by UT ¼ isy,
the spin z component is conserved, and Δ ¼ Δ1 ¼ Δ2.
We also notice that if we assume ðΔ2=Δ1Þ ≤ −1, the

superfluid weight will become zero, or even a negative
number. A negative superfluid weight is unphysical,
denoting that the BCS wave function of such a pairing
is not a stable ground state. This also indicates that if there
is no constraint on the order parameter ΔðkÞ, the superfluid
weight will not be bounded. However we expect a weaker
pairing strength in the bands which are farther away from
the Fermi level, or jΔ2j < jΔ1j. If the pairing in higher
bands are much stronger than pairing in the flat bands—a
physically impossible situation—our projection of the BdG
Hamiltonian into the flat bands may also become invalid.
Hence we later set Δ2 ¼ 0 in order to estimate the
topological contribution of Ds.
Now we apply Eq. (6) to TBLG, and show that the fragile

topology of TBLG flat bands yields a finite lower bound of
the superfluid weight although it has zero spin Chern
number. The Bistritzer-MacDonald (BM) model [3] has
C2zT, C2x, and C3z symmetries, in which T stands for the
spinless time reversal transformation. If all the spins and
valleys are considered here, we will have well-defined time
reversal symmetry, although the BM model itself does not.
The C2zT symmetry is crucial for the flat bands’ topology
[22,26,28,44]. Because of this symmetry, the two eigen-
values of the non-Abelian Wilson loop have to be complex
conjugation to each other [26,28]. A winding number can
be defined by Wilson loop eigenvalues. C2zT symmetry
gives a constraint not only to the Wilson loop but also to the
Berry connection and Berry curvature. It can be shown
[26,28] that the non-Abelian Berry connection and curva-
ture of the two flat bands can always be written as AðkÞ ¼
−aðkÞσ2 and F xyðkÞ ¼ −fxyðkÞσ2 under a proper local
gauge choice on a patch in the Brillouin zone (although a
global gauge choice which satisfies this condition might
not exist [63]). In the Supplemental Material [50], Sec. V,
we prove that the Wilson loop winding number [26], or the
“Euler class” in Ref. [28] denoted by e2, of the two
topological bands, which is an integer, is given by the
integral of fxy over the whole BZ (with Dirac points
removed from the integral area):
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e2 ¼
1

2π

Z
d2kfxy: ð8Þ

The wave function of the two flat bands in TBLG (per spin
per valley—which are good quantum numbers for small
twist angles) also can be used to define the positive-definite
non-Abelian quantum geometric tensor Gij (which is a
2 × 2 complex matrix) and Fubini-Study metric gij ¼
1
2
TrðGij þG†

ijÞ. For arbitrary complex vectors ci ∈ C2,

the inequality
P

ij c
†
iGijcj ≥ 0 always holds. By choosing

vectors cx and cy properly [50], we find that the metric is
bounded by the “Abelian part” fxy of the non-Abelian
Berry curvature F xy: trg ≥ 2jfxyj. The derivation of band
topology and metric of the TBLG can be found in the
Supplemental Material [50], Sec. V.
In small angle TBLG, all bands are fourfold degenerate

with respect to spin ↑;↓ and with respect to original
graphene valley K, K0. The order parameter ansatz in
Eq. (5) corresponds to the pairing between opposite spins
and valleys, because time reversal transformation in TBLG
will flip both spin ↑;↓ and valley K, K0. If we assume no
pairing in higher bands (Δ1 ¼ Δ;Δ2 ¼ 0), which is physi-
cally reasonable, the superfluid weight in the exact flat
band limit will be the same as the expression shown in
Eq. (3). However, both the pairing strength and metric have
different meanings. gijðkÞ stands for the Fubini-Study
metric derived from the wave functions of two flat bands
(with spin ↑ and valley K, all other degenerate spin and
valley bands have identical contribution to the superfluid
weight). Also Δ1 is no longer the pairing strength in all the
bands but only in these flat bands. Because of the two band
winding number protected by C2zT symmetry, we have a
new lower bound. The inequality trg > 2jfxyj naturally
leads to the lower bound of the trace of the superfluid

weight trDs ≥
8e2Δ1

πℏ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð1 − νÞp

even though the (spin)
Chern number here vanishes. Here we used the fact that
the winding number of TBLG flat bands is e2 ¼ 1. Due to
the C3z symmetry, superfluid weight must be isotropic,
therefore Ds ¼ 1

2
tr½Ds�ij. Then we can use the following

equation to estimate the topological contribution of Ds:

Ds ≈
4e2Δ1

πℏ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð1 − νÞ

p
: ð9Þ

From this equation, we find that a nonzero superfluid
weight is possible even when the bands are exactly flat, as
long as the Cooper pairing gap is developed (Δ1 ≠ 0). The
parameter Δ1 can be estimated from the measured Tc. The
filling ratio ν is determined by the carrier density. Below we
use experimental data to estimate the value of superfluid
weight at zero temperature [64].
As previously mentioned, in 2D superconductors, the

transition temperature Tc measured in experiment is the
Berezinskii-Kosterlitz-Thouless temperature (when phase

coherence disappears) instead of the BCS mean field
transition temperature T�

c ≈ Δ1=2kB (when Cooper pairing
vanishes). The BKT transition temperature is given by the
universal relation ½ℏ2DsðTcÞ=e2kBTc� ¼ ð8=πÞ [49], and it
is generically lower than the BCS mean field transition
temperature T�

c. To derive the BKT temperature of TBLG in
the flat band limit, we can generalize the topological
superfluid weight expression in Eq. (9) to finite temper-
atures, which however has no simple analytical expression.
By assuming Δ1ðTÞ ≈ 2kBT�

cð1 − T=T�
cÞ1=2 [46], we can

numerically calculate the temperature dependence of the
superfluid weight. As an example, we have plotted Ds in
Fig. 1 as a function of Tc=T�

c for filling ratio ν ¼ 1=4 (two
electrons per Moiré unit cell), from which we find
Tc=T�

c ¼ 0.35. See the Supplemental Material [50],
Sec. VII, for more detailed calculations.
We now estimate the TBLG topological superfluid

weight Ds at zero temperature. When the bandwidth is
small (zero), one expects the superfluid weight to be
dominated by the band topology contribution. The exper-
imental transition temperature [4,5] is Tc ¼ 1.5 K, thus the
order parameter can be estimated to be Δ1 ¼
2kBT�

c ≈ 0.74 meV. By using ν ¼ 1=4, the topological
superfluid weight is ½Ds�top ≈ ð4e2Δ1=πℏ2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

νð1 − νÞp
.

One notices that this is an order of magnitude smaller
than the superfluid weight in conventional materials, such
as BSCCO and MoGe [66,67]. However in both cuprates
and MoGe thin films, the typical carrier density is around
n ≈ 1014 cm−2 [68] two orders of magnitude larger than
that in TBLG (where n ≈ 1012 cm−2), hence such a super-
fluid weight is already large for TBLG.
Moving away from completely flat bands, we find

that the conventional term in the superfluid weight
mostly depends on the bandwidthW, while the topological
term mostly depends on the pairing order parameter Δ1. In
TBLG, the bandwidth W and the transition temperature Tc
have a similar magnitude, and we expect the topolo-
gical term to have an important contribution. In the
strong pairing limit where Δ > W, the superfluid weight
will be underestimated if by only the conventional
contribution [34].

Tc

0.5 1
0

1

2

T/T*c

Δ1 (T)

kB T*c

2Ds (T)

e2 kB T*c

8
π

T
T*c

h

FIG. 1. The gap function Δ1ðTÞ and superfluid weight DsðTÞ.
In the flat band limit the BKT temperature is Tc ≈ 0.35T�

c
when ν ¼ 1=4.
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Recently, superconductivity has been observed in other
Moiré systems, including twisted double bilayer graphene,
and multilayer graphene and boron nitride heterostructure
[69–77]. In these systems, a displacement electric field is
necessary for superconductivity. This yields gapped flat
bands with a nonzero valley Chern number [69,74]. The
Chern number can be larger than one, which could lead to a
larger topological lower bound of superfluid weight. In
twisted multilayer graphene, the bandwidth of flat bands is
even smaller than that in TBLG. A higher transition
temperature (larger Δ) was also observed [75,76]. We
expect the topological lower bound plays a significant role
in the superfluid weight of these systems. Moreover,
multilayer systems with C2zT symmetry can realize larger
Euler e2 invariants, hence increasing the superfluid weight.
In summary, we proved that the fragile topology can

yield a nonzero superfluid weight which is lower bounded
by its Wilson loop winding number. We also note that our
lower bound is consistent with the upper bound studied in
Ref. [78]. For topological flat bands, the upper bound in
Ref. [78] is around the energy gap Eg between the flat
bands and other bands, while our lower bound is propor-
tional to the order parameter Δ, which is derived under the
assumption that jΔj ≪ Eg. However, all the above dis-
cussion is based on superconducting mean field theory.
Competing order parameters might be able to break
symmetry which protects the topology, and further break
the topology-bounded quantities.
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