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Motivated by the recent observation of an anomalous Hall effect in twisted bilayer graphene, we use a
lowest Landau level model to understand the origin of the underlying symmetry-broken correlated state.
This effective model is rooted in the occurrence of Chern bands which arise due to the coupling between the
graphene device and its encapsulating substrate. Our model exhibits a phase transition from a spin-valley
polarized insulator to a partial or fully valley unpolarized metal as the bandwidth is increased relative to the
interaction strength, consistent with experimental observations. In sharp contrast to standard quantum Hall
ferromagnetism, the Chern number structure of the flat bands precludes an instability to an intervalley
coherent phase, but allows for an excitonic vortex lattice at large interaction anisotropy.
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Moiré graphene systems are a class of simple van der
Waals heterostructures [1] hosting interaction driven low-
energy physics, making them an exciting platform to
advance our understanding of correlated quantum matter.
In twisted bilayer graphene (TBG) with a small twist angle
between adjacent layers, interaction effects are enhanced by
van Hove singularities coming from eight nearly flat bands
around charge neutrality (CN) in the Moiré- or mini-
Brillouin zone (MBZ) [2–21]. Observation of correlated
insulating states when 2 or 6 of the 8 TBG flat bands are
filled confirms the importance of interactions [22–28].
Recent experiments indicate that certain magic angle

graphene devices have large resistance peaks at ν ¼ 0, 3,
with the latter featuring an anomalous Hall (AH) effect
detected via hysteresis in the Hall conductance as a
function of the out-of-plane magnetic field [29]. The
Hall conductance is of order e2=h but not yet quantized.
Some have detected an meV-scale gap at CN, and a
hysteretic behavior of the Hall conductance with applied
field at ν ¼ −1 [30]. In this Letter we discuss how the
breaking of the 180° rotational symmetry (C2z) by a
partially aligned hexagonal boron-nitride (h-BN) substrate
could explain these observations. A variety of works
[31–37] have found that h-BN opens up a band gap at
the Dirac points of graphene whose magnitude depends on
the graphene and h-BN alignment angle, reaching ΔAB ∼
17 meV [37] to ∼30 meV [35,36] at perfect alignment.
Notably, even in seemingly unaligned devices with little or
no observable h-BN induced Moiré potential, band gaps of
several meV are still observed [36,37]. In TBG, the
substrate can likewise gap out the band Dirac points at
the K� points of the MBZ, splitting the bands as 8 ¼ 4þ 4
to create a gap at CN. We find that for certain sublattice
splittings the resulting flat bands have Chern number
C ¼ �1. This makes the TBG case similar to ABC stacked

trilayer graphene, where under an appropriately directed
electric field the flat bands have Chern numbers �3 [38].
Accounting for the C2z-breaking substrate, the basic

structure of the problem is as follows. The gap at CN allows
us to focus only on the four nearly degenerate conduction
(valence) bands for fillings above (below) CN, i.e., ν > 0
(ν < 0). These four Chern bands are uniquely labeled by
their valley τ ¼ þ;− and spin s ¼ ↑;↓; time reversal
switches the valley index and enforces opposite Chern
numbers for bands from opposite valleys. Since a jCj ¼ 1
band is topologically equivalent to a Landau level (LL), the
problem is roughly analogous to a spinful bilayer quantum
Hall problem with one flux quanta per unit cell, but with
opposite layers (valleys) experiencing opposite magnetic
fields. The LLs are degenerate, but as in a quantum Hall
ferromagnet (QHFM) [39] at integer filling the electrons
may open a gap by spontaneously polarizing into a subset
of these LLs, or a coherent superposition of them. In
conventional quantum Hall bilayers at filling ν ¼ 1, inter-
actions generically drive interlayer coherence, e.g., the
exciton condensate [40,41]. But the twist here is the
opposing Chern numbers of the two valleys. We find that
the Chern number structure provides a topological reason
for penalizing a coherent state: an exciton condensate
between C ¼ 1;−1 bands is analogous to a superconductor
in a strong magnetic field, which forces vortices into the
order parameter, reducing the gain in the correlation energy.
Hence, a spontaneously valley-polarized (VP) state is stable
and exhibits an AH effect with Hall resistance∼h=e2 (QAH
if completely spin and valley polarized). Further, pinning of
valley polarization by an out-of-plane Bz due to a large
orbital g factor explains the presence of the Rxy hysteresis
loop observed in Ref. [29].
The possibility of spin and valley polarization and/or

quantum anomalous Hall physics and chiral edge states in
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TBG has been discussed previously in Refs. [38,42–50],
albeit from a different perspective.We also note that a recent
self-consistent Hartree-Fock (HF) treatment of the con-
tinuum model exhibits spontaneous C2zT breaking at CN,
though the resulting Chern numbers were C ¼ �2 [46].
Substrate-induced Dirac mass and Chern numbers.—We

model the effect of the h-BN substrate [31] by including in
our band calculations a uniform but C2z breaking A − B
sublattice splitting Δt and Δb on the top and bottom layer
respectively (see the Supplemental Material [51] for
details). While h-BN may also introduce a Moiré potential,
its magnitude falls off much more rapidly with alignment
angle than Δt=b [37]. For our calculations we used a twist
angle θ ≈ 1.05°, and have taken a phenomenological
corrugation effect into account by using a larger AB=BA
interlayer hopping w1 as compared to the AA=BB interlayer
hopping w0. Taking w0=w1 ¼ 0.85 results in flat bands
separated from the dispersing bands by an energy gap of
approximately 20 meV (for zero sublattice splittings).
With sublattice splitting, the phases of the τ ¼ þ valley

(or K valley of monolayer graphene) Moiré Hamiltonian
for different parameter regimes of Δt and Δb are shown in
Fig. 1. We find four different regions where both Dirac
cones in the MBZ are gapped because of the sublattice
splittings. In these regions, there are two isolated flat bands.
We find that these four regions have bands with Chern
numbers [59] C ¼ �1 or C ¼ 0, and are separated from
each other by a Dirac point at either the K− or Kþ point in
the MBZ. In Fig. 1 we show the Chern number of the flat
band for the τ ¼ þ valley above (below) CN in green
(orange). The Chern number for the flat bands from the
τ ¼ − valley can be obtained by a time reversal.
The location of the C ¼ �1 phases can be understood

from the fact that for small Δt ¼ Δb > 0 or Δt ¼ Δb < 0,
the leading order effect of the sublattice potentials is to
generate Dirac masses with the same sign at both the K−

and Kþ points of the MBZ. Because both Dirac cones in a
single valley have the same chirality, this leads to bands
with Chern number �1, a feature earlier work dubbed a
“flipped Haldane model” [60] (see also [61–63]). From
Fig. 1 we see that even if only one of the layers has a
nonzero sublattice splitting, the strong interlayer coupling
ensures that both Dirac cones at the MBZ K points acquire
a mass.These findings can also be inferred analytically
within the “chiral” approximation of twisted bi-layer
graphene [64,65], in which all bands are sublattice polar-
ized and carry Chern number C ¼ στ, where σ denotes
sublattice.
Metal-valley polarization competition.—In this Letter,

we focus only on the four flat conduction bands above the
CNP (the highlighted band in Fig. 1 and its valley and spin
counterparts). In the Supplemental Material, we numeri-
cally justify this for TBG, showing that Δt ∼ 15 meV
(Δb ¼ 0) creates a 30 meV gap between valence and
conduction bands [51]. To phenomenologically model
the effect of interactions in this set of bands we adopt a
lowest Landau level (LLL) description. We can map the
Chern bands to a LLL by constructing the Wannier-Qi
states [51,66,67]. In the following, we use an approxima-
tion where the Wannier-Qi states of the flat bands are
replaced by the continuum LLL wave functions of a two-
dimensional electron gas. Physically, this amounts to
neglecting the inhomogeneous Berry curvature in the
Chern bands. The AH effect and edge transport reported
in Ref. [29] can be explained if there is one VP hole per
Moiré unit cell. From the data in Ref. [29] is not possible to
exclude a spin-unpolarized, gapless phase. If the spins do
polarize however, the underlying mechanism is expected to
be the same as in conventional QHFM [39], and is not
sensitive to the opposite Chern numbers of the two valleys.
Therefore, in the analysis below we ignore spin and focus on
the mechanism of valley polarization. Considering the
uniform repulsive nature of the projected Coulomb inter-
action and the numerical evidence against stripes in the LLL
[68], we disregard the possibility of interaction-induced
charge density waves, and focus on the competition between
valley-polarized, intervalley coherent and metallic phases.
For this we need to introduce two parameters in our LLL toy
model: the bandwidth and the interaction anisotropy. To
achieve a nonzero bandwidth we use a square lattice
potential, that sidesteps the complexities of a hexagonal
lattice and allows analytical progress.
We consider a torus of length Lx (Ly) in the x (y)

direction, with a magnetic field perpendicular to the sur-
face. We choose units in which LxLy ¼ 2πNϕl2B ≡ Nϕa2,
where Nϕ is the number of flux quanta piercing the torus,
and lB ¼ ðℏ=eBÞ−1=2 is the magnetic length. In particular,
we will take Lx ¼ Nxa and Ly ¼ Nya, with Nϕ ¼ NxNy.
Next to the magnetic field, we also add a periodic potential
VPðx; yÞ ¼ w½cosð2πx=aÞ þ cosð2πy=aÞ�, such that there
is exactly 2π flux in each unit cell. The potential is invariant

C = -1C=0

C=0

C = 1

(a)

C = -1C=0

C=0

C = 1

(b)

FIG. 1. The effect of sublattice splittings Δt and Δb on the
spinless single-valley Moiré Hamiltonian (SVMH). (a) Band
structure around CN for Δt ¼ 15 meV and Δb ¼ 0. The flat band
above (below) CN has Chern number C ¼ −1 (C ¼ 1). (b) Phase
diagram of the SVMH for different Δt and Δb. Phases are labeled
by the Chern number C of the flat τ ¼ þ conduction band. Blue
(red) transition lines are characterized by a Dirac cone at the K−
(Kþ) point of the MBZ.
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under translations over a in both the x and y directions,
which means that the momenta kx ¼ nð2π=NxaÞ and ky ¼
nð2π=NyaÞ (n ∈ Z) are good quantum numbers.
We are interested in the physics in the LLL with Chern

numbers C ¼ 1;−1. The electron creation operator pro-
jected in these subspaces takes the form ψ†

�ðx; yÞ ¼
ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LylB

ffiffiffi
π

pq
ÞPk e

iky−ð1=2l2BÞðx∓kl2BÞ2c†�;k, where we have

chosen the Landau gauge which explicitly preserves
(continuous) translation symmetry in the y direction, such
that k ¼ 2πn=Ly ¼ 2πn=Nya with n ∈ f0; 1;…; NxNyg.
We now proceed in analogy to Ref. [69], and define the
Bloch states c†�;ðkx;kyÞ ¼ c†�;k as

c†�;k ¼ 1ffiffiffiffiffiffi
Nx

p
XNx−1

n¼0

e�ikxðkyþnQÞl2Bc†�;kyþnQ; ð1Þ

where Q ¼ ffiffiffiffiffiffi
2π

p
=lB ¼ 2π=a. The density operator in the

LLL n�ðqÞ ¼
R
dre−iq·rψ†

�ðrÞψ�ðrÞ takes the form

n�ðqÞ ¼ FðqÞ
X
kx;ky

e�iqykxl2Bc†�;k−q=2c�;kþq=2; ð2Þ

where the form factor is given by FðqÞ ¼ e−q
2l2B=4. In the

Bloch basis, theHamiltonian termassociatedwith the periodic
potential takes the diagonal form Hp ¼ P

k εkðc†þ;kcþ;kþ
c†−;kc−;kÞ, with εk ¼ −we−π=2½cosðkxaÞ þ cosðkyaÞ�.
We are interested in the effect of density-density inter-

actions on the LLL electrons moving in the periodic
potential, described by the following Hamiltonian:

Hi ¼ 1

2Nϕ

X
q;τ;τ0

Vτ;τ0 ðqÞ∶nτðqÞnτ0 ð−qÞ; ð3Þ

where we neglect the small intervalley scattering terms
[51]. We will consider a general repulsive interaction of
the form VðqÞF2ðqÞ ¼ u0ðqÞð1þ τxÞ þ u1ðqÞð1 − τxÞ. In
analogy to quantum Hall ferromagnetism [39,40,70]
and related strongly coupled systems [71,72], at the half
filling of the two bands we expect that the main effect ofHi

is to introduce a valley Hund’s coupling between the
electrons resulting in an insulating ground state. On
the other hand, the kinetic term Hp coming from the
periodic potential favors a metal over the VP insulator.
To study the competition between these two phases,
we perform a HF analysis using Slater determinants with
correlation matrix hc†τ;kcτ0;k0 i ¼ δτ;τ0δk;k0ΘðϵτF − ϵkÞ, such
that

P
τ

P
k ΘðϵτF − ϵkÞ ¼ Nϕ. The possibility of interval-

ley coherent states is addressed in the next section. For each
Slater determinant, we define the corresponding valley
polarization Pv as Pv ¼ ðNþ − N−Þ=Nϕ, where Nþ (N−) is
the number of electrons in theþ (−) valley. Without loss of
generality, we restrict to Pv > 0.

We first consider an isotropic (u1ðqÞ ¼ 0) dual-gate
screened Coulomb potential with LLL form factors
u0ðqÞ ¼ 2πUe−q

2l2B=2 tanh ðdjqjÞ=jqj, and screening length
d ¼ a. Using this interaction potential, we calculated the
HF energy EHF [51]. We find that for W=U ≲ 0.6, where
W ≡ 4we−π=2 is the bandwidth, the completely VP state
indeed has the lowest energy. WhenW=U ≈ 0.6, the valley
polarization Pv of the optimal Slater determinant jumps and
starts decreasing continuously, indicating a first-order Mott
transition from the VP insulator to an itinerant valley
ferromagnet. Around W=U ≈ 2.0, Pv continuously goes
to zero and a conventional metallic phase sets in the
Supplemental Material [51].
Intervalley coherence and exciton vortex lattice.—In

bilayer QH ferromagnets, the insulating layer-polarized
state is unstable to a uniform exciton condensate or
interlayer coherent state in presence of infinitesimal inter-
action anisotropy u1ðqÞ > 0 [40]. The situation here is
different as even with u1ðqÞ ¼ 0, there is no SU(2) valley
symmetry because of the Chern number mismatch. The VP
state therefore only breaks discrete symmetries, indicating
there will be no instability of this insulating state. Another,
more physical, way to understand the absence of an exciton
condensation instability is to use an analogy with type II
superconductors. Because electrons in bands with an
opposite Chern numbers effectively see opposite magnetic
fields, an electron-hole condensate ΔðrÞ ¼ hc†þ;rc−;ri will
behave like a charge 2e superconducting order parameter in
a perpendicular magnetic field. However, in our scenario, a
Meissner-like effect, corresponding to uniform amplitude
of the exciton order parameter, is ruled out from the outset.
Rather, the magnetic field must leak through vortices in the
exciton order parameter, leading to an excitonic vortex
lattice phase. In this section, we show that both the VP
insulator and the unpolarized metal are energetically
favorable to the exciton vortex lattice, for sufficiently small
interaction anisotropy u1ðqÞ.
For our LLL model, we can derive an exact expression

for the exciton vortex lattice order parameter ΔðrÞ. To
respect all symmetries of the square lattice, we expect ΔðrÞ
to have vortices at both the lattice sites and the plaquette
centers, leading to a 4π vorticity in each unit cell. In the
analytically tractable limit, we can uniquely determineΔðrÞ
up to a translation by demanding its invariance under the
magnetic translations T ðax̂Þ and T ða=2ðx̂þ ŷÞÞ, connect-
ing the anticipated vortices [51]. In Fig. 2 we plot the
magnitude of ΔðrÞ thus obtained, from which we clearly
see the expected Abrikosov vortex lattice. Projecting ΔðrÞ
to the LLL Bloch basis wave functions ϕ�;kðrÞ leads to a
diagonal order parameter

Δk ¼ Δ0

X∞
j¼−∞

e−iðπ=2Þj2e−1=4ð2kyþjQÞ2l2B−ikxð2kyþjQÞl2B ; ð4Þ
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where Δ0 represents the overall strength of the exciton
condensate.Δk has two nodes with identical phase winding
at k ¼ �ðπ=2;−π=2Þ, as shown in Fig. 2 [51].
The presence of two zeros in the BZ with the same phase

winding is a topological requirement for the exciton order
parameter, and is not an artifact of our effective LLL model.
In an isolated band a with nonzero Chern number Ca, the
phase of the electron creation operator c†a;k cannot be chosen
to be both continuous and single-valued over the BZ. In
particular, it must wind 2πCa times along the boundary of
the BZ in a continuous gauge choice. This implies that the
phase of Δk ¼ hc†þ;kc−;ki winds 2πðCa − CbÞ ¼ 4π times
along the BZ boundary for bands from opposite valleys with
Ca ¼ 1 and Cb ¼ −1, which precisely corresponds to
winding around two zeros with identical chirality.
We now demonstrate that variational states with an

exciton vortex lattice have higher energy than the VP state
or themetal for small anisotropy u1 in the interactionHi.We
consider the Slater determinant ground state jψMFi of the
mean-field Hamiltonian HMF ¼

P
k;τ;τ0 c

†
k;τhτ;τ0 ðkÞck;τ0 ,

where hτ;τ0 ðkÞ¼ϵk1þhτzþReðΔkÞτxþImðΔkÞτy. jψMFi
is characterized by the valley polarization Pv (determined
by h) and an exciton vortex lattice of strength Δ0, to be
treated as variational parameters. The correlation matrix
evaluated in this state takes the form of the projector
hc†τ;kcτ0k0 i ¼ Pτ;τ0 ðkÞδk;k0 , which can be used to evaluate
the regularized HF energy density eHFðPv;Δ0Þ of the
variational state for a given microscopic interaction at a
fixed filling ν ¼ 1. We find that the global minimum of eHF

lies at jPvj ¼ 1 and Δ0 ¼ 0 for the insulator in the limit of
flat bands and isotropic interaction (u1 ¼ 0) [51]. We next
show that the states of interest, with a fixed valley polari-
zation Pv at filling ν ¼ 1, are stable to the formation of an
vortex lattice in presence of small interaction anisotropy. To
do this, we consider the difference in energy density
eHFðPv;Δ0Þ − eHFðPv; 0Þperturbatively in jΔ0j for arbitrary
repulsive interaction parametrized by u0 and u1; a positive
difference would indicate that Δ0 ¼ 0 corresponds to an
energy minimum. For the polarized phase, we find

eHFð1;Δ0Þ − eHFð1; 0Þ

¼ 1

8h2

�Z
k;q

u0ðqÞjΔþ − Δ−j2

þ
Z
k;q

u1ðqÞjΔþ þ Δ−j2 − 4u1ð0Þ
Z
k
jΔkj2

�
; ð5Þ

whereΔ� ≡ Δk�q=2 [51]. For a uniformexciton condensate,
Δk ¼ Δ0 and this energy difference is negative [51].
However, for an exciton order parameter formed with
electrons and holes from opposite Chern bands,
∇kΔk ≠ 0. Therefore, when u1 is sufficiently small com-
pared to u0, the energy of the statewith nonzeroΔk is higher.
So the VP state with Δ0 ¼ 0, previously shown to be the
ground state with an isotropic interaction for smallW=u0, is
indeed robust to small interaction anisotropy. Analogous
computations [51] show that the unpolarized metal
(Pv ¼ 0 ¼ Δ0) is stable to the vortex lattice as well. An
approximate phase diagram of our model for a short-range
(LLL-projected) interaction anisotropy u1ðqÞ ¼ u1e−q

2l2B=2

is presented in Fig. 3. For TBG, we expectW=U ≲ 0.2 from
the ratio of the bandwidth to the Coulomb interaction, and
the anisotropy u1=U ≲ 0.01 to be small [51,73], indicating a
VP phase consistent with experiments [29,74]. In the
supplement, we numerically solve the mean-field equations
for TBG on h-BN at ν ¼ 3 and confirm that the spin and VP
QAH state is indeed the ground state.
Valley-Zeeman effect.—Having argued in favor of a VP

state at ν ¼ 3, we turn to the observed hysteresis in the ν ¼ 3
Hall conductance as a function of out-of-plane magnetic
field Bz [29]. To this end, we compute the orbital gv-factor
for the TBG conduction bands. In a band τ without time-
reversal electrons can carry a momentum-dependent orbital
moment mτ;k [75,76]. Time reversal ensures that
mτ;k ¼ −m−τ;−k, which averaged over the MBZ produces
a valley-Zeeman splitting E ¼ −gvðτz=2ÞμBBz. We find that
for Δb ¼ 0, Δt ∼ 10–30 meV, gv ranges from approxi-
mately −2 to −6 [51]. Note that for Bz > 0, the C ¼ 1

FIG. 2. The magnitude of the excitonic order parameter in
real (left) and momentum (right) space (for a ¼ 1, Δ0 ¼ 1). The
red circles denote identical phase winding of Δk at both nodal
points.

(a) (b)

FIG. 3. (a) Approximate phase diagram of spin-polarized
interacting electrons from opposite valleys in C ¼ �1 bands.
The phases are (A) fully VP insulator, (B) exciton vortex lattice,
(C) partially polarized metal or itinerant valley ferromagnet, and
(D) unpolarized metal. Everywhere within phases A and C,
Rxy ≠ 0. (b) Metal-insulator competition and the valley polari-
zation Pv for isotropic interaction.
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band comes down in energy. The sign of this effect is in
agreement with the Landau fans of Refs. [29,74].
Conclusion.—We showed that broken inversion sym-

metry in TBG due to substrate (h-BN) coupling leads to
two Chern bands per valley. Spontaneous polarization of
holes in spin and valley space then leads to an AH state at
ν ¼ 3. Using a LLL model, a HF analysis establishes a
stable VP state as the ground state when the bandwidth is
small compared to the interaction strength. The opposite
Chern numbers for the two valleys precludes uniform
intervalley coherence. The resultant exciton vortex lattice
structure reduces correlation energy gain and stabilizes
valley polarization. This result agrees with numerical work
on a Hubbard model [77].
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Note added.—Recently, a quantized AHE with net Chern
number C ¼ 1 has been observed for a gapped insulator at
ν ¼ 3 in TBG aligned with h-BN [74], consistent with our
theoretical results. Quantized AHE arising from valley-
Chern bands have also been observed [79] and proposed
[80,81] in other Moiré heterostructures, in accordance with
our phenomenological picture of interaction in nearly flat
bands with opposite Chern numbers.
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