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Viscoelastic flows through microstructured geometries transition from steady to time dependent and
chaotic dynamics under critical flow conditions. However, the implications of geometric disorder for flow
stability are unknown. We measure the onset of spatiotemporal velocity fluctuations for a viscoelastic flow
through microfluidic pillar arrays, having controlled variations of geometric disorder. Introducing a small
perturbation into the pillar array (∼10% of the lattice constant) delays the onset of the instability to higher
flow speed, and yet larger disorders (≥ 25%) suppress the transition to chaos. We show that disorder
introduces preferential flow paths that promote shear over extensional deformation and enhance flow
stability by locally reducing polymer stretching.
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Viscoelastic fluids encompass a wide range of complex
materials having a mechanical response to strain that lies
between elastic solids and viscous fluids [1]. Even in the
absence of inertia, viscoelastic flows can spontaneously
exhibit time dependency when elastic stresses overcome
viscous stresses. This condition is often characterized by a
Weissenberg number, Wi ¼ τ_γ > Wicr ∼ 1, where _γ is the
typical shear rate and τ is the fluid relaxation time [2].
These viscoelastic instabilities impact a wide range of
natural and industrial applications, including secondary
flows in DNA and blood suspensions [3,4], increased
hydrodynamic resistance [5] along with power consump-
tion and cost in polymer processing, and enhanced
mixing and dispersion in microfluidic and porous media
flows [6–8].
Parallel viscoelastic flows are nonlinearly unstable [9,10]

and upstream flow perturbations are required to trigger a
subcritical transition [11,12], where the resulting velocity
fluctuations are commonly termed “elastic turbulence”
[13]. Conversely, in flows with strong base curvature, a
linear instability—initiated through polymer stretching
along curved streamlines [14]—results in a supercritical
transition [15,16]. Focusing on the latter case for flows
through geometrically complex microstructure (e.g.,
porous media and pillar arrays) [17], time dependent,
curvature-induced flow instabilities at the pore scale
[18,19] communicate with adjacent pores in highly con-
nected networks to exacerbate fluctuations. Experimental
[15,20–23] and numerical [24–26] efforts have character-
ized elastic instabilities in a wide range of geometries,
but how geometrical disorder affects the onset of elastic
instability remains an open question.
Geometrical disorder is a fundamental determinant of

transport properties for diverse physical systems, ranging
from Anderson localization [27] to colloidal glasses [28] to

network dynamics [29]. Similar to viscoelastic flows,
coupled dynamical systems are known to display chaotic
dynamics under sufficient driving force [30]. However,
simulations suggest that disorder can promote synchroni-
zation among arrays of forced, coupled pendula [30,31] and
cause a transition from a self-organized-critical (SOC)
distribution of avalanches to systemwide, periodic events
in earthquakes and neural networks [32,33], phenomena
which have been realized in relatively few experimental
systems [31,34]. In this Letter, we use microfluidic experi-
ments to demonstrate how flow channelization, conferred
by geometric disorder, suppresses the supercritical tran-
sition and chaotic dynamics of viscoelastic flow (Fig. 1).
The underlying mechanism of enhanced flow stability is the
promotion of shear over extensional deformation, which
reduces polymer stretching. The sensitivity of this tran-
sition to small geometrical perturbations shows that the
onset of linear viscoelastic instabilities in hydraulic net-
works is not predicted by traditional metrics [14] such as
the Weissenberg number. Rather, viscoelastic stability
depends strongly upon the Lagrangian deformation expe-
rienced by fluid particles, mediated by disorder. This
newfound insight into viscoelastic flow stability in complex
geometries has direct implications for remediation, extrac-
tion, and filtration processes, including enhanced oil
recovery where chaotic viscoelastic flow promotes mixing
and oil displacement [7,8].
Microfluidic channels (25 mm long, 4 mm wide, 50 μm

high) containing arrays of cylindrical pillars (diameter,
d ¼ 50 μm) were fabricated using soft lithography. Five
individual microchannels were fabricated with disorders,
β ¼ ½0; 0.125; 0.25; 0.5; 1.0�, where pillar locations were
randomly displaced from an ordered hexagonal lattice
(lattice constant, a ¼ 120 μm) within a hexagon of circum-
radius, βa (see Supplemental Material [35]). The viscoelastic
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fluid is a dilute solution (c=c� ¼ 0.43) of high molecular
weight polyacrylamide (PAA; 18 × 106 g=mol; c ¼
150 ppm) in a viscous solvent (97% aqueous glycerol)
[15]. The polymer solution is slightly shear thinning
(viscosity, η) and has a relaxation time, τ¼1.14 s�0.1 s,
where the latter was measured using a capillary breakup
extensional rheometer (CaBER; see Figs. S3 and S4 [35]).
The viscoelastic fluid is pressure driven through the pillar
arrays (Elveflow OB1), and video microscopy (Nikon Ti-e;
10×, 0.3 NA objective) captures the motion (100 fps; Andor
Zyla) of fluorescent tracer particles (diameter, 0.5 μm).
Time-resolved velocity fields uðr; tÞ are measured using
particle image velocimetry [54], and Lagrangian statistics are
obtained by simultaneous particle tracking. A maximum
Reynolds number of Re ¼ ρUd=η≲ 10−4 (density ρ; mean
flow speed U) ensures that inertial effects are negligible.
The introduction of geometric disorder into the pillar

arrays shifts the flow topology from highly periodic to
heterogeneous and decreases the temporal fluctuations
of the velocity field. Flow speed fields, uðr; tÞ ¼
juðr; tÞj, are time averaged, ūðrÞ ¼ huðr; tÞit, to quantify
flow topology [Fig. 1(a)] as a function of both disorder β
and flow strength, where the latter is characterized by the
Weissenberg number, Wi ¼ τU=d. At low Wi, disorder
induces heterogeneities in the time-averaged speed field
[Fig. 1(a), Wi ≈ 0.1], similar to Newtonian flows [55,56].
As Wi is increased, the flow speed in fast flowing regions
becomes amplified leading to “channelization” of the

flow field [Fig. 1(a), β ¼ 1.0]. In ordered geometries, the
measured local temporal fluctuations [15], ũrmsðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðũðr; tÞ − hũðr; tÞitÞ2it

p
, of the normalized speed field,

ũðr; tÞ¼ uðr; tÞ=U, increasewithWi, as expected forWi≳ 1
[Fig. 1(b), corresponding to green box in Fig. 1(a)]. In
surprising contrast, the amplitude of the temporal flow speed
fluctuations decreases by an order of magnitude as the
disorder is increased at high Wi [Fig. 1(c), Wi ≈ 4; see also
Supplemental Material, movies 1–5 [35] ].
Careful inspection of the velocity field reveals that sub-

pore-scale spatial fluctuations are negligible, justifying our
coarse-grained, hydraulic network description of the fluc-
tuating flow field [Figs. 2(a)–2(c)] [12]. The normalized
speed fields are interpolated [Fig. 2(b)] between pillars to
obtain a time dependent speed profile [Figs. 2(d) and 2(e)],
ũðλi; tÞ, where λi runs across throat i. Kymographs of the
local throat flow speed fluctuations about the mean,
ũ0 ¼ ũiðtÞ − hũiðtÞit, show that their spatial extent is
comparable to the pore scale [Figs. 2(d) and 2(e)]. Thus,
we take the instantaneous flow speed averaged across each
throat, ũiðtÞ ¼ hũðλi; tÞiλi , as our metric for speed fluctua-
tions [Fig. 2(f)]. The normalized throat flow speed initially
exhibits small fluctuations in the ordered system, which
markedly grow with increasing Wi [Fig. 2(f), β ¼ 0]. In
distinct contrast, throat speeds for the disordered system
remain steady for all Wi [Fig. 2(f), β ¼ 1] with comparable
fluctuations to the Wi ≈ 0.1 ordered system [Fig. 2(f),
β ¼ 0]. This pore-scale analysis captures the essential
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FIG. 1. Disorder reduces chaotic fluctuations in viscoelastic flows. (a) Normalized, time-averaged speed field, ūðrÞ=max½ūðrÞ�, in a
microfluidic pillar array for a range of Weissenberg numbers, Wi, and geometric disorders, β (40% of full field of view shown; see also
Supplemental Movies 1–5 [35]). Scale bar, 150 μm. (b) Local, normalized speed field fluctuations, ũrmsðrÞ, as a function of increasing
Wi, corresponding to speed fields for β ¼ 0 [green box in (a)]. (c) Local, normalized speed fluctuations as a function of increasing
disorder, corresponding to speed fields for Wi ≈ 4 [magenta box in (a)].
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features of the system (Fig. 1) and provides a convenient
framework to determine how disorder affects the dynamical
transition to chaos.
Examination of the pore-scale flow speed fluctuations

demonstrates that the onset of time dependent flow
undergoes a global, forward bifurcation [12,35] in the
ordered geometries but not in disordered geometries. The
ensemble-averaged, temporal fluctuation of the normal-
ized throat speeds, Σ̃ ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðũiðtÞ − ūiÞ2it

p
ii, is used as

the order parameter, where ūi ¼ hũiðtÞit [Fig. 3(a)]. For
the ordered lattice (β ¼ 0) at Wicr ≈ 0.5, we observe a
supercritical bifurcation in the throat speed fluctuations
lacking hysteresis (see Fig. S9 [35]), which is consistent
with prior work in ordered arrays [12] and the predicted
linear instability [9,14]. The transition is also accompa-
nied by the onset of slow flow speed fluctuations (see
Supplemental Movie 2 [35]). A minor perturbation to
the ordered geometry (β ¼ 0.125) significantly delays the
transition to Wicr ≈ 1.2, where time dependent flow
occurs. At yet higher disorders, the transition may be
delayed beyond the limits of our experiment as the flow
appears stable up to Wi ≈ 5, with no discernible bifurca-
tion for β ≥ 0.25 and significantly damped speed fluctu-
ations. For example, Σ̃ for viscoelastic flows with β ¼ 1.0
is one order of magnitude smaller than for β ¼ 0

and comparable to Σ̃ for both Newtonian and shear-
thinning control experiments [Figs. 3(a) and 3(c); see
Supplemental Material [35] ]. This result represents the
first observation of the stabilizing effect of disorder on
viscoelastic flow. The simple scaling of Wicr across
disorders fails to predict the onset of the viscoelastic
instability, indicating a deeper coupling between flow
topology and polymer stretching.

As disorder suppresses the abrupt onset of temporal
fluctuations, it introduces spatial heterogeneity into the
flow topology [56], where viscoelasticity further enhances
flow channelization (Fig. 1) [35]. The normalized, spatial
throat speed fluctuations, Γ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðūi − hūiiiÞ2ii

p
, reveal a

continuous increase with Wi from their respective, mea-
sured Newtonian values Γ̃N for highly disordered geom-
etries (β ¼ ½0.25; 0.5; 1.0�) [Fig. 3(b)]. In contrast, ordered
geometries (β ¼ ½0; 0.125�), where bifurcations in Σ̃ are
evident, show relatively little change in Γ̃ with Wi
[Fig. 3(b)]. The result is an apparent trade-off between
spatial and temporal fluctuations with increasing disorder
[Fig. 3(c)]. The nonlinear flow response of disordered
systems to increased Wi goes beyond a simple increase in
the spatial heterogeneity of flow speed, and the observed
channelization [Figs. 1(a) and 2(c)] [57] alters the nature of
the deformations experienced by fluid particles.
The local mode of fluid deformation, or flow type,

dramatically affects the hydrodynamic response of
viscoelastic fluids [58]. The flow-type parameter [59],
Λ ¼ ðjjDjj − jjΩjjÞ=ðjjDjj þ jjΩjjÞ, quantifies the local
flow kinematics ranging from pure rotation (Λ ¼ −1) to
shear (Λ ¼ 0) to pure extension (Λ ¼ þ1), where D and Ω
are the strain rate and vorticity tensors, respectively, and
jjDjj ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2D∶D
p

. At low Wi, the flow through both ordered
(β ¼ 0) and disordered (β ¼ 1) arrays is dominated by
extension [Fig. 4(a), top row]. As Wi increases, the flow
type in the ordered geometry remains primarily extensional
[Fig. 4(a), bottom left]. However, a clear shift toward shear-
dominated flow type is evident in the disordered geometry
[Fig. 4(a), bottom right], suggesting that the flow type
experienced by fluid particles is integral to the stabilizing
mechanism of these viscoelastic flows.
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FIG. 2. Pore-scale velocity fluctuations are indicative of elastic instability. (a) Normalized, time-averaged speed field for the ordered
lattice (β ¼ 0, Wi ≈ 4). Streamlines (black) are computed from measured flow fields, and pillar locations (gray circles) are used to
discretize throat cross sections (gray lines). Scale bar, 70 μm. (b) Schematic of the throat flow profile ũðλi; tÞ and spatially averaged
speed ũiðtÞwith local coordinate λi. (c) Normalized, time-averaged speed field for a disordered lattice (β ¼ 1, Wi ≈ 4). (d),(e) Measured
instantaneous [ũðλi; tÞ; green] and time-averaged (hũðλi; tÞit; black) throat speed profiles (left) and flow speed fluctuation,
ũ0i ¼ ũiðtÞ − hũiðtÞit, kymographs (right) for individual throats from (d) ordered and (e) disordered channels [blue throats in (a)
and (c), respectively; Wi ≈ 4]. Instantaneous speed profiles (left, green) correspond to indicated kymograph time (right, green).
(f) Normalized, instantaneous throat flow speed for disordered (β ¼ 0) and ordered (β ¼ 1) throats at three different Wi values [blue
throats in (a) and (c), respectively].
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The degree of polymer stretching is dependent upon the
Lagrangian flow-type history of fluid particles, which
ultimately dictates the global dynamics of viscoelastic flows
[60]. The autocorrelation of the flow type [Fig. 4(b)] along
measured particle trajectories [Fig. 4(a), bottom right, green
tracks] quantifies the constancy of fluid deformation. In
ordered arrays [Fig. 4(b), left, β ¼ 0], fluid particles are
subjected to strongly extensional flow with regular fre-
quency, whereas the weakly correlated flow type experi-
enced in random media likely facilitates polymer relaxation
[Fig. 4(b), right, β ¼ 1] despite the spatial correlations
introduced by flow channelization (Fig. 1). To compare
the relative flow type experienced by fluid particles across
geometries, we compute the ensemble-averaged, mean
flow type (see Fig. S12 [35]) along measured particle
trajectories [Fig. 4(a), bottom right] over one relaxation
time τ [Fig. 4(c)]. This time-averaged flow type initially

decreases with Wi for all disorders, tending toward shear.
However, the most ordered geometries (β ¼ ½0; 0.125�)
plateau atΛ > 0.3 for Wi ≳ 1, corresponding to the unstable
regime.
Examination of the flow-type topology suggests that

shear-dominated preferential paths in disordered systems
globally reduce the extensional strain and the susceptibility
for instability. The local flow speed negatively correlates
with flow type in disordered arrays (Fig. S11 [35]): Low
speed regions experience relatively strong extension, which
efficiently stretches polymers and results in higher local
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flow resistance [58]. Thus, as Wi increases, the system self-
selects to enhance flow along low resistance preferential
paths, where the locally unidirectional flows are dominated
by shear that weakly stretches fluid particles. In contrast,
continuity in ordered geometries frustrates the formation
of preferential paths and promotes strongly curved exten-
sional flows around pillars, which is the primary driver of
viscoelastic instability [12,14]. Taken together with the
Lagrangian analysis, our results show that disordered
media enable viscoelastic flow to minimize extensional
strain and thus stave off elastic instability, whereas ordered
microstructure maintains sufficiently strong, coherent
extension to trigger instability.
Lagrangian unsteady flows, having nonconstant stretch

history, present theoretical challenges for understanding
elastic flow instabilities [60]. The Pakdel-McKinley cri-
terion provides some insight into the geometry-dependent
conditions for elastic stability [14]:

�
τU
R

σ11
η0 _γ

�
1=2

≥ Mcr; ð1Þ

where R is the radius of curvature of a streamline, σ11 is
the streamwise tensile stress, and η0 is the zero shear rate
viscosity. The first term τU=R represents the contribution
of geometry to polymer stretching through streamline
curvature, but this effect has only a minor variation across
disorders (see Fig. S7 in the Supplemental Material [35]).
The second term in the criterion σ11=ðη0 _γÞ is the ratio of
extensional to shear stresses. While we do not have access
to the local σ11, the observed evolution to shear-dominated
flow with increasing Wi and disorder (Fig. 4) is consistent
with reducing the Pakdel-McKinley number, tending
toward stable flow.
In this Letter, we demonstrate that the introduction of

finite disorder into hydraulic networks suppresses the onset
of chaotic velocity fluctuations associated with viscoelastic
instability. The stabilizing effect of disorder is attributed to
the formation of preferential flow paths, which shifts the
flow-type history of fluid particles from extensional in
ordered systems to shear-dominated in disordered systems.
This work emphasizes the need for a Lagrangian under-
standing of viscoelastic flows in complex geometries
beyond the Weissenberg number [14]. While the Pakdel-
McKinley criterion partially accounts for flow topology,
globally averaged metrics may be insufficient to predict
viscoelastic stability in complex networks, underscoring
the necessity for predictive theoretical tools. More broadly,
coupled systems often exhibit chaotic dynamics, but few
tangible examples of the counterintuitive restoration of
stability by disorder have thus far been demonstrated [34].
Hence, this work provides a novel, experimental example
of the suppression of chaos via disorder and adds to the
growing canon of this important phenomenon.
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