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We demonstrate that a committee of deep neural networks is capable of predicting the ground-state and
excited energies of more than 1800 atomic nuclei with an accuracy akin to the one achieved by state-of-the-
art nuclear energy density functionals (EDFs) and with significantly less computational cost. An active
learning strategy is proposed to train this algorithm with a minimal set of 210 nuclei. This approach enables
future fast studies of the influence of EDF parametrizations on structure properties over the whole nuclear
chart and suggests that for the first time a machine learning framework successfully encoded several
correlated aspects of nuclear deformation.
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Introduction.—Today, more than 3000 atomic nuclei
have been identified, revealing the wide diversity of nuclear
phenomenology (deformation, superfluidity, clustering,
halo, etc.). Predicting nuclear properties over the whole
range of known mass and charge and beyond is therefore a
daunting challenge yet essential to unveil new exotic states
of matter, foster our quest to the superheavy island of
stability, and answer the fundamental questions of nucleo-
synthesis. Among the different microscopic approaches of
nuclear structure, only the framework of energy density
functionals (EDFs) [1] is currently capable of providing a
complete and accurate description of ground- and excited-
state properties [2–4]. Large-scale deployment of nuclear
EDFs is however associated with a high computational
cost, especially when it is implemented at its multireference
level (MR EDFs), also referred to as beyond mean field.
Such a cost is prohibitive to our understanding of the
variations of global nuclear features with different EDFs.
Ultimately, fitting an effective interaction at the beyond-
mean-field level is a tremendous task that was only
undertaken once [5] and yielded a root mean square error
(rms) on the experimentally known masses of 790 keV. As
a result, most of our beyond-mean-field calculations are
based on EDFs fitted at the mean-field level, which brings
a double counting bias in the predictions. Attacking the
problem from a different angle, Athanassopoulos et al. built
a neural network capable of predicting the whole nuclear

table of mass with a rms of 950 keV [6]. This idea has then
been further explored by training neural networks, Bayesian
networks, or Gaussian processes to predict the residual
between an existing theory and experimental data. It was
applied on different models and observables (masses, charge
radii, and two neutron separation energies) and typically
reduces the binding energy rms to a few hundreds of keV
[7–13]. In all these studies, the quality of the predictions is
obtained (i) by the knowledge of an initial model with good
performances (typically 1–2 MeV rms on the ground-state
mass) and (ii) by training the artificial intelligence (AI) on a
vast amount of experimental data (especially masses and
radii), typically 80% of one of the atomic mass evaluations
(AME) [14], i.e., more than 1800 nuclei. This large training
set, as well as the fact that these algorithms can only predict
one observable, severely restricts the predictive capability of
such fast approaches as compared to the EDF approach. In
this Letter, we propose a new strategy where an algorithm
learns not one observable but several intermediate quantities
(potential energy surfaces and inertia) involved in a multi-
reference EDF approach. The idea is that while speeding up
drastically the calculation of these quantities, the AI will
encompass the correlations between several aspects of
nuclear deformation. After a training step, this approach
also enables us to compute from theAI’s predictionsmultiple
low-energy observables such as the ground-state and excited
energies.

PHYSICAL REVIEW LETTERS 124, 162502 (2020)
Editors' Suggestion

0031-9007=20=124(16)=162502(5) 162502-1 © 2020 American Physical Society

https://orcid.org/0000-0003-3591-629X
https://orcid.org/0000-0002-0345-7271
https://orcid.org/0000-0001-9242-641X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.162502&domain=pdf&date_stamp=2020-04-20
https://doi.org/10.1103/PhysRevLett.124.162502
https://doi.org/10.1103/PhysRevLett.124.162502
https://doi.org/10.1103/PhysRevLett.124.162502
https://doi.org/10.1103/PhysRevLett.124.162502


Method.—In this work, nuclear structure properties are
tackled within the five-dimensional collective Hamiltonian
(5DCH) approach [15–18]. First, constrained Hartree-
Fock-Bogoliubov (HFB) calculations in the space spanned
by both the axial and triaxial quadrupole mass moments
capture the static correlations associated to quadrupole
deformation and pairing. The generation of this manifold
of states labeled by the quadrupole deformation variables
ðβ; γÞ is by far the most demanding in terms of numerical
resource. Then, the effect of the quantum-mechanical
fluctuations of the order parameters β and γ around the
minimal energy region is accounted for through the
construction and solving of the 5DCH. More precisely,
we first compute from the HFB constrained states the
corresponding HFB energy surface EHFBðβ; γÞ, the 2 × 2
symmetric matrix Bðβ; γÞ that stands for the vibrational
inertia, the rotational inertia Ikðβ; γÞ associated with the
three axes k of the intrinsic frame, and a zero-point energy
correction ΔVðβ; γÞ. We then build the 5DCH as recalled in
Ref. [19] and seek its eigensolutions giðβ; γ;ΩÞ:

ðĤK;rot þ ĤK;vib þ ĤVÞgiðβ; γ;ΩÞ ¼ Eigiðβ; γ;ΩÞ: ð1Þ

The collective Hamiltonian contains (i) a kinetic term
ĤK;rot associated with rotation that couples the quadrupolar
degrees of freedom to the Euler angles Ω, (ii) a vibrational
kinetic term ĤK;vib, and (iii) a potential term ĤV that only
depends on the quadrupolar deformations. The eigensolu-
tions of Eq. (1) directly yield the correlated ground-state
energy as well as the typical rotational and vibrational
bands of the excitation spectrum.
The main idea of this work is to simultaneously teach the

eight functions, EHFB, ΔV, B00, B01, B11, and Ik (k ¼ 1, 2,
3), defining the collective Hamiltonian to an AI so that it
learns their underlying correlations. Our AI consists of a
committee of multilayer neural networks [20] that under-
take the regression of these functions. Each neural network
(NN) takes as input the number of neutrons N and protons
Z and returns the values of the eight functions on a
discretized mesh of the deformation space. After a learning
stage involving a random initialization of each member, the
prediction of the committee is obtained by averaging the
outputs of its members. The benefit of using a committee is
twofold: (i) reducing the variance of the prediction asso-
ciated with the random initialization of the members and
(ii) providing a simple estimation of this variance which we
can leverage in an active learning procedure.
The members of the committee all have the same

network architecture. Their input is the number of neutrons
and protons encoded in a 600 bit string as detailed in
Ref. [19]. Note that contrary to Ref. [11], we chose an
encoding of the inputs that is totally agnostic of any a priori
knowledge of the physics (i.e., shell effects in the vicinity
of the valley of stability). This typically avoids imposing a
structure of the inputs based on hard coded magic numbers

that may not be relevant in exotic mass and charge regions
[21]. Internally, the neural networks contain five hidden
layers defined by the sequence 600−300−150−100−75
of their number of neurons. The first part of the network
embeds the information of the nucleus into a neck of
75 neurons only while its second part predicts from this
embedding the output functions. We attempted to fine-tune
some hyperparameters of this architecture such as the
number, size, and types (dense, convolutions, etc) of the
hidden layers with a grid-search approach. Our results seem
quite stable in the neighborhood of the chosen hyper-
parameters (cf. Refs. [19,22,23]).
With this choice of architecture, we perform a supervised

training on a set of nuclei for which we know the targeted
functions from previous constrained HFB calculations. To
maximize the quality of the committee while minimizing
the number of HFB calculations required for its training,
we implemented an active learning procedure inspired by
Ref. [24]. It consists of an iterative algorithm which can
be summarized by these few steps. (1) Sample an initial
training set of nuclei and compute their collective functions
with constrained HFB. (2) Train each member of the
committee on this set. (3) Query from the committee a
set of additional nuclei that are likely to improve the
predictions of the committee if added in the next training
step. (4) Compute the collective functions of these new
nuclei with constrained HFB and add them into the training
set. (5) Reiterate from step (2) up to some stopping criteria.
At step (2), we train independently the neural networks

corresponding to each member of the committee following
a standard technique in machine learning. This procedure,
detailed in Refs [19,25–28], minimizes a training loss while
avoiding overfitting the network. The training loss consists
of a weighted sum of the partial lossesLtðN; ZÞ per nucleus
(N, Z) and per output function t. The partial losses are
themselves defined as the squared error between the AI’s
prediction tAI and the HFB calculation tHFB averaged on the
deformation space ðβ; γÞ ∈ ½0; βþ ¼ 0.9� × ½0; ðπ=3Þ� for
one nucleus:

LtðN; ZÞ ¼ 6

πβ2þ

Z
β;γ

jtAIðβ; γÞ − tHFBðβ; γÞj2dββdγ: ð2Þ

After each training stage, five new nuclei are added to
the training set. To select them, we improved the method
proposed in Ref. [24] in the following way. Each member
of the committee makes a prediction for more than 2000
nuclei and we first isolate the 10% for which the standard
deviation between members is the highest. Then we use a k-
means algorithm to detect five clusters among these nuclei
and take in each cluster the nucleus for which members’
predictions differ themost. To accelerate the training process,
we normalized each output function (cf. Ref. [19]). The HFB
energy is, for instance, transformed by first removing a
deformed liquid drop formula inspired by Ref. [29] and then
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performing a linear scaling to obtain a zero mean and unity
standard deviation on the training set of nuclei.
Results.—We consider a dataset of 2100 even-even

nuclei taken from the AMEDEE database [30] and with
the charge and neutron ranges Z ∈ ½10; 120� and
N ∈ ½10; 260�. For these nuclei, we dispose of the eight
functions, EHFB, ΔV, B00, B01, B11, and Ik (k ¼ 1, 2, 3),
calculated at 94 deformation points with the Gogny D1S
effective interaction [31]. For each nucleus, we first
interpolated these raw data on a 64 × 64 regular grid with
splines of degree 2. We start the active learning of the
committee of NN with 2% of the nuclei sampled randomly
from an adapted jittered sampling [32], that ensures a
certain uniformity in the N-Z plane. We then run the active
learning up to a point where the training set contains 20%
of the 2100 nuclei. At each learning step, we evaluate the
quality of the committee’s predictions on the Mtest test
nuclei not present in the training set (Mtest > 80% of the
database). To do so we determine for each output function t
its associated rms defined as

rmsðtÞ ¼
�

1

Mtest

XMtest

i

LtðNi; ZiÞ
�1=2

: ð3Þ

We show in Fig. 1 the evolution of the rms associated with
the HFB energy as a function of the size of the training set.
Starting above 2 MeV, it follows an exponential-like
decrease to reach less than 400 keV at 20%. We compare
these results with the ones obtained if we train the same
committee of NN on a set of nuclei that is (i) randomly
chosen at each step (ii) incremented at each step with the 5
nuclei that maximize the global test rms (computed on the
test set). Note that this last procedure requires the a priori
knowledge of the HFB results for all nuclei. The active
learning approach outperforms the naive random selection
of the training set by roughly 200 keVas soon as more than
5% of the dataset is used for training. In addition, the
training based on the test loss gives even better results
in this region. This shows the possibility that a more

sophisticated algorithm of active learning could still improve
our current results. Choosing the size of the training set is a
trade-off between the accuracy of the resulting AI and the
numerical cost associated with the HFB calculations of the
training nuclei. In Table I, we report the rms of the eight
output functions obtained at four different steps of the active
learning. A striking result is the quality of the committee’s
prediction already achieved with only 10% of the total
dataset. The HFB energy, which is a key feature in the
determination of the correlated energies, is reproduced
within 557 keV over the 1890 nuclei of the test set. In the
following we therefore show the results obtained with this
10% training set.
The quality of the committee’s prediction varies with N

and Z. To assess what parts of the nuclear chart are
correctly grasped by the committee of neural networks,
we emphasize in Fig. 2 the individual rms per nucleus
L1=2
t ðN; ZÞ for three different kinds of outputs. For the HFB

energy, the AI captures very well the vast majority of heavy
nuclei but struggles in the medium and light sectors
(N < 50). An especially high rms is found close to the
N ¼ Z line where HFB calculations are known to predict a
strong energy cusp. The difficulty to reproduce the HFB
energies in the light sector with neural networks was
already encountered in Ref. [11] and is related to the sharp
variations present in this region. Figure 2(a) shows that the
active learning procedure automatically densified the train-
ing set in this region to mitigate this difficulty. Concerning
the vibrational and rotational inertia, the error of the AI
globally increases with the mass and some of the error
peaks can be identified close to shell closures, e.g., for the
vibrational inertia close to the neutron number N ¼ 80. We
compare in Fig. 3 the AI and reference HFB predictions for
three targeted functions for 178Os. We choose this nucleus
because (i) its excitation spectrum is known experimentally
and (ii) its partial root mean square rmsðEHFBÞ is 409 keV,
which lies just above the median of this quantity over the
test set. It is therefore representative of how the committee
of NN performs for most of the test nuclei. Once again, the

FIG. 1. rms of the HFB energy on the test nuclei as a function of
the size of the training set (in percent of the AMEDEE database).
We compare results obtained with a training set determined by the
active learning (red), by random sampling (black), and by an
incremental choice based on the test loss (green).

TABLE I. The rms obtained on the test set at different stages of
the active learning. The first column contains the size of the
training set in percent of the AMEDEE database while the others
highlight the rms of the outputs of the committee of NN. The last
column contains the rms associated with the correlated ground-
state energy EGS solution of Eq. (1). We emphasize in bold font
the training set retained for the rest of this Letter.

EHFB ΔV I1 I2 I3 B00 B01 B11 EGS

Training % (keV) (ℏ2 ×MeV−1) (MeV−1) (keV)

5 1190 417 1.84 2.80 0.97 13.8 12.0 28.2 1325
10 557 312 1.40 2.25 0.76 11.7 10.2 23.9 716
15 471 247 1.25 2.02 0.69 10.6 9.4 21.9 655
20 388 202 1.22 1.96 0.68 10.2 9.1 21.2 518
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overall topology of EHFB, I2, and B00 are very well grasped
by the committee despite the fact that the closest nucleus in
the training set is the 180W, which has 4 additional neutrons
and 2 protons less.
Finally, we focus on the correlated ground-state energy

and excitation spectra obtained from Eq. (1). To solve the
eigenproblem, we discretized the Euler angle space on the
basis of Wigner rotational wave functions as in Ref. [15],
whereas the deformation space is discretized on a finite
element basis implemented with the FELIX-2.0 library [33].
We perform the comparison between the AI and the HFB
reference for the 1666 nuclei of the test whose minimum of
the potential energy lies below β ¼ 0.8. This simple filter
removes the superheavy nuclei with an open fission
channel in our deformation space, for which the ground
statewould be spuriously predicted at too high deformations.
As reported in Table I, we obtain a rms of 716 keV for the
ground-state energy. Although a direct comparison is not
sound, note that this number has the same order ofmagnitude
than the rms difference between experiments and predictions

from state-of-the-art nuclear EDFs (500–800 keV for the
Skyrme HFB mass models [34,35]). Figure 4 displays the
excitation spectra of 178Os obtained from both the HFB and
committee predictions and gives for the sake of completeness

(a)

(b)

(c)

(d)

FIG. 2. (a) The AMEDEE database nuclei are plotted in gray as
a function of N and Z. The red squares stand for nuclei included
in the 10% training set obtained by the active learning. Panels
(b)–(d) display the resulting AI versus HFB root mean square per
nucleus [L1=2

t ðN; ZÞ] for the three outputs EHFB, I2, and B00,
respectively.

(a)

(b)

(c)

FIG. 3. HFB energy (a), rotational inertia along the principal
axis (b), and vibrational inertia related to elongation (c) resulting
from both constrained HFB calculations and the AI. These
functions are plotted for 178Os in the standard polar representation
where β is the radial coordinate and γ the polar angle.

FIG. 4. Excitation spectrum of 178Os obtained from both the AI
(AI) and the constrained HFB calculations (HFB). The exper-
imental spectrum (Exp.), taken from the ENSDF database [36], is
also displayed.
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the experimental values taken from the ENSDF database
[36]. The rotational band predicted by the committee of NN
impressivelymatches theHFB datawith only a 8%deviation
for the first 2þ, 4þ, and 6þ states. Finally, the first excited 0þ
level is reproduced within 13% despite the complexity of the
vibrational inertia topology.
Conclusions.—In this work we built, for the first time, a

machine learning framework capable of estimating the low-
energy structure of all nuclei from a given EDF. Stunning
performances are achieved, viz., a rms of 716 keV on the
correlated ground-state energy with respect to the MR EDF
calculation for a training on only ∼200 nuclei. Further
improvements seem in reach, e.g., by (i) refining the
selection of the training set of nuclei (cf. Fig. 1) and
(ii) exploring more involved active learning techniques
such as negative correlation learning [37] or more sophis-
ticated kinds of neural networks. This fast framework opens
the opportunity to quickly test the impact of new para-
metrizations of EDFs in the context of astrophysics and
superheavy production. On top of this, it paves the way
toward fitting new EDFs at the multireference level and
with multiple observables (ground-state masses, radii, and
spectroscopic features). Finally, the success of this
approach is a first proof of principle that a committee of
NN is able to encode several correlated aspects of nuclear
deformation. The neural networks involved likely possess a
satisfying nontrivial internal representation of the physics
of the system. Studying this representation may unveil new
physical concepts grasped during the active learning.
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