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Elastic Antiproton-Nucleus Scattering from Chiral Forces
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Elastic scattering of antiprotons off “He, '>C, and '®'%0 is described for the first time with a consistent
microscopic approach based on the calculation of an optical potential (OP) describing the antiproton-
target interaction. The OP is derived using the recent antiproton-nucleon (pN) chiral interaction to
calculate the pN ¢ matrix, while the target densities are computed with the ab initio no-core shell model
using chiral interactions as well. Our results are in good agreement with the existing experimental
data and the results computed at different chiral orders of the pN interaction display a well-defined

convergence pattern.
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With the Facility for Antiproton and Ion Research
(FAIR) construction under way [l] and the recent
antiProton Unstable Matter Annihilation (PUMA) proposal
[2,3], scientific interest in new experiments on antiproton
scattering off nuclear targets (nucleons and nuclei) will
experience a renaissance.

In the past, there has been a lot of activity in the
antiproton physics at the Low Energy Antiproton Ring
(LEAR) at CERN as well as at KEK in Japan and
Brookhaven National Laboratory (BNL) in the USA. At
LEAR, in particular, several measurements of cross sec-
tions have been made for antiproton elastic and charge-
exchange scattering reactions at antiproton momenta in the
range 100 MeV/c < p <2 GeV/c [4-7].

The dominant feature of antiproton-proton scattering at
low energies, i.e., the energy region on which our Letter is
focused, is the annihilation process that, due to its large
cross section, greatly reduces the probability of rescattering
processes. Antiproton-nucleus (pA) scattering is thus likely
to be described by simple reaction mechanisms without the
complication of multiple scattering processes, which makes
it a very clean method to study nuclear properties. In fact,
the pronounced diffraction structure of the differential cross
sections (in contrast with elastic proton scattering) is
commonly interpreted as a consequence of the role played
by the strong absorptive potential driven by the annihilation
of nucleons and antinucleons. Antiproton absorption is
surface-dominated [7-9] and is strongly sensitive to nuclear
radii. The exchange mechanism and the antisymmetrization
between the projectile and the target constituents are not
relevant in the pA interaction, while the role played by the
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three-body forces involving an antiproton and two nucleons
(pNN) still remains an open question.

From the theoretical point of view, the description of
antiproton-nucleon (pN) processes was mainly based on
long-range meson exchanges, with the addition of phe-
nomenological models for annihilation contributions.
Several approaches have been proposed over the last forty
years. One of the most successful potentials is the model
proposed by Dover and Richard [10,11] who were inspired
by the Paris potential. Other antinucleon-nucleon (NN)
interactions, based on the meson theory, were also derived
[12,13], where the NN potential of Ref. [13] was used to
study pA quasibound states [14]. A more general approach
[15] was also employed to provide a partial-wave analysis
of antiproton-proton data. A similar situation is found for
PA scattering processes. In the 80s, several nonrelativistic
and relativistic calculations were performed with different
approaches which made use of an optical potential (OP)
[16] but required some phenomenological input. A sum-
mary of all these calculations can be found in Ref. [17].
Even in recent years new phenomenological models have
been presented [18-21].

Because of the tremendous advances in computational
techniques achieved in the past decades, it is now possible
to compute the OP for pA scattering in a fully microscopic
and consistent way. The purpose of this Letter is to
construct the first fully microscopic OP for elastic pA
scattering using the most recent techniques in nuclear
physics, in particular, the application of chiral pN poten-
tials combined with nuclear densities obtained from ab ini-
tio calculations with chiral two- (NN) and three-nucleon
(3N) interactions. The results for the elastic differential
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cross sections produced with our OP will be then tested
against the existing experimental data. For such a purpose,
we adopt a scheme analogous to that employed in Ref. [22],
where a microscopic OP for proton-nucleus (pA) elastic
scattering has been derived within the Watson multiple
scattering theory [23] at the first order term of the spectator
expansion [24] and assuming the impulse approximation.
Recently, interest in the microscopic calculation of the OP
for nucleon-nucleus (NA) processes produced several new
papers and a very recent review can be found in Ref. [25].
Here we mention the work of Burrows et al. [26], which
improved the calculation of the OP including the coupling
between the target nucleon and the residual nucleus, the
work of Arellano and Blanchon [27] on the irreducible
nonlocality of the OP, the work of Whitehead er al. [28]
based on the calculation of the nucleon self-energy within
the framework of the improved local density approxima-
tion, and the work of Kohno [29] on the Pauli rearrange-
ment potential.

In the present work the OP is computed in momentum
space as

Ug.K:E)= > /dPn(q, K, P)

N=p.n

1/A+1 A-1
XIPN|:q’§<TK+ TP),E:|

A—-1gq A—-1gq
XpN<P+VT§’P_VTE>’ (1)

where ¢ and K represent the momentum transfer and the
average momentum, respectively. Here P is an integration
variable, ¢;y is the pN free ¢ matrix and py is the one-body
nuclear density matrix. The parameter # is the Mgller
factor, which imposes the Lorentz invariance of the flux
when we pass from the pA to the pN frame in which the ¢
matrices are evaluated. Finally, E is the energy at which the
¢ matrices are evaluated and it is fixed at one-half the kinetic
energy of the incident antiproton in the laboratory frame.

The calculation of Eq. (1) requires two basic ingredients:
the pN scattering matrix and the one-body nuclear density
of the target. The calculation of the density matrix is
performed using the same approach followed in Ref. [22],
where one-body translationally invariant (trinv) densities
were computed within the ab initio no-core shell model
[30] (NCSM) approach using NN and 3N chiral inter-
actions as the only input. The NCSM method is based on
the expansion of the nuclear wave functions in a harmonic
oscillator basis and it is thus characterized by the harmonic
oscillator frequency 7A€ and the parameter N, which
specifies the number of nucleon excitations above the
lowest energy configuration allowed by the Pauli principle.
In the present work we used the NN chiral interaction
developed by Machleidt ef al. [31,32] up to the fifth order

(N*LO) with a cutoff A = 500 MeV. In addition to the NN
interaction, we also employed the 3N force to compute the
one-body densities of the target nuclei. We adopted the 3N
chiral interaction derived up to third order (N*LO), which
employs a simultaneous local and nonlocal regularization
with the cutoff values of 650 and 500 MeV, respectively
[33,34]. The interaction is also renormalized using the
similarity renormalization group (SRG) technique that
evolves the bare interaction at the desired resolution scale
Asrg and ensures a faster convergence of our calculations.
The densities have been computed using 2Q = 20 MeV and
Npax = 14 for “He and AQ = 16 MeV and N,,, = 8 for
12C and '®1%0. For all these calculations we always adopted
Jsrg = 2.0 fm~!. Finally, the importance-truncated NCSM
basis [35,36] was used for the '2C and '©180 calculations at
N = 8. We refer the reader to Ref. [22] for all the details
about the calculation of the densities and the removal of the
center-of-mass contributions.

The same NN interaction was used in Ref. [22] to
compute the pA scattering matrix. The pN interaction is
different from the proton-nucleon (pN) one and in the
present case it is not possible to compute the 7;y matrix
with the same potential adopted for the calculation of the
density. For such calculation we use the first pN interaction
at the next-to-next-to-next-to-leading order (N’LO) in
chiral perturbation theory (ChPT) recently derived by
Dai, Haidenbauer, and Meifiner [37]. In recent years,
approaches based on ChPT had a great success, especially
in the NN sector [31,32,38,39]. They are able to include
symmetries and symmetry-breaking patterns of low energy
QCD and, at the same time, provide a reliable framework to
express the NN force in terms of a series of pion-exchange
and contact interaction terms. Two-body and many-body
contributions naturally arise from the same prescriptions.
The NN reaction matrix is obtained solving a regularized
Lippmann-Schwinger equation for the bare NN potential.
We refer the reader to Refs. [40,41] for a complete survey
of ChPT and to Refs. [42,43] for the recent developments.
Higher-order corrections to Eq. (1) are very difficult to
estimate [44], in particular in a consistent picture along the
chiral expansion of the NN potential, but surely deserve
future studies.

In comparison with conventional NN scattering, some
issues must be addressed in the case of NN scattering. The
main difference is that in the NN case the annihilation
channel is available because the total baryon number is
zero. For low-momentum protons, elastic pN scattering
requires a higher number of partial waves compared to the
pN counterpart. All phase shifts are complex because of the
annihilation process and both isospin 0 and 1 contribute in
each partial wave [45]. As a consequence, a treatment of
PN scattering is intrinsically more complicated than the
usual NN system.

A conventional way to relate the NN interaction to the
NN counterpart is G parity, i.e., a combination of charge
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conjugation and rotation in isospin space [37]. It connects
the pion-exchange physics, so even in the NN case the
long-range physics is completely determined by chiral
dynamics. In Ref. [37], Dai et al. developed a pN potential
at N°LO in analogy with the corresponding NN potential
presented in Refs. [38,39,46], with the same power count-
ing and a regularization scheme in the coordinate space. It
seems that such a local scheme could avoid problems with
the long-range part of the interaction due to pion exchange
that, of course, should not be affected by any regularization
procedure. We are aware of the many theoretical aspects
beyond the regularization procedures (see Ref. [47] and
references therein) and more studies will be needed in the
future. In Ref. [37], five different potentials are provided
with different values of the coordinate space cutoff R, that
reproduce with almost the same quality the NN phase
shifts. In the present work we employ the R = 0.9 fm
version.

In Fig. 1 our results for the differential cross sections of
elastic antiproton scattering off “He and '°C, computed at
the antiproton laboratory energy of 180 MeV, and 6180 at
178 MeV are presented and compared with the experi-
mental data. Our model provides a very good description of
the data for all the target nuclei considered. In particular, it

do/d<2 [mb/sr]

is remarkable the agreement in correspondence of the first
minimum of the diffraction pattern for all the targets and the
general reproduction of the data for 30, since this is an sd
nucleus and is on the borderline of applicability of
the NCSM.

One of the advantages of using a NN or a NN interaction
in the ChPT scheme is the ability to estimate the theoretical
error associated with the truncation of the potential at a
certain order of the chiral expansion. In Fig. 2 we display
the convergence pattern of the differential cross section for
the '“C(p,p)'”C reaction computed at different chiral
orders. For a consistent comparison, all the calculations
have been performed with the pN and NN interactions at
the same order in the chiral expansion. For the calculation
of the density at N2LO and N°*LO we included the 3N force
at N’LO with the couplings cp and cy constrained to the
triton half-life and binding energy. This produced two more
fits of these parameters [51], different from those employed
with the NN N*LO interaction, to be used with the NN
interaction at the same chiral order. All these results are
displayed in Fig. 2. As can be seen in the figure, at the
leading order (LO) the calculated cross section is in clear
disagreement with data and has a minimum at about 33°,
which is more than 2 orders of magnitude lower than the
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FIG. 1.

Differential cross sections as a function of the center-of-mass scattering angle for elastic antiproton scattering off different

target nuclei. The results were obtained using Eq. (1), where the 7y matrix is computed with the pN chiral interaction of Ref. [37] and
the one-body trinv nonlocal density matrices are computed with the NCSM method using two- [32] and three-nucleon [33,34] chiral

interactions. Experimental data from Refs. [48-50].
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FIG. 2. Differential cross section as a function of the center-of-
mass scattering angle for elastic antiproton scattering off 1°C at
180 MeV, computed at different chiral orders. Experimental data
from Ref. [49].

experimental one, which is positioned at about 23°. A bit
better result is obtained at NLO, where the first minimum is
shifted towards smaller angles but the agreement with the
experimental cross section is still poor. At N’LO the
minimum is increased by about 2 orders of magnitude,
close to the experimental value, but in comparison with the
experimental cross section the calculated cross section is
shifted towards larger angles and the agreement with data
remains poor. Only at the N*LO the first minimum is well
reproduced and the general agreement with data is quite
good. It is interesting to note how the differences between
the results at different orders decrease going from LO to
N3LO, which reflects the improvement and confirms a
well-defined convergence pattern. Similar results were
found in Refs. [52,53], where a similar analysis was
performed for pA elastic scattering using several chiral
NN interactions at N3LO and N*LO. The conclusion is
that, for energies around 200 MeV, a good description of
the experimental data is obtained with NN or NN inter-
actions up to at least N3LO. However, the choice of a
different fitting procedure [54] can produce an interaction
capable to describe the experimental data already at N’LO,
as recently showed in Ref. [26] for the NA case.

All the results presented so far were obtained with target
densities computed using NN and 3N interactions renor-
malized via the SRG. To assess the impact of the SRG
procedure in our calculations, we display in Fig. 3 the
results for the differential cross section and analyzing
power for “He computed with the bare NN and 3N
interactions and the same values of N, and 7€Q. The
results are also compared with the ones in Fig. 1. As can be
inferred from the figure, the resulting densities produce
the same results with minor differences at large scattering
angles. Unfortunately, this is the only fully consistent
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FIG. 3. Differential cross section (a) and analyzing power (b) as

functions of the center-of-mass scattering angle for elastic
antiproton scattering off “He at 180 MeV. The solid line
represents the same result displayed in Fig. 1, the dashed line
has been obtained with the target density computed without the
SRG procedure, while the dash-dotted line has been obtained
with the target density computed with only the NN interaction
and without the SRG procedure. We always used the same values
of N. and 7AQ. Experimental data from Ref. [49].

calculation that we can perform at the moment, since, in
general, the usage of the bare interaction requires higher
values of the N, parameter for a complete convergence
of the structure calculations and this is computationally
prohibitive for heavier systems like carbon or oxygen.
Finally, in Fig. 4 we display our predictions for the
analyzing power of '°C and '®'%0, computed at the same
energies and with the same inputs of Fig. 1. We also show
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FIG. 4. Analyzing power as function of the center-of-mass
scattering angle for elastic antiproton scattering off '>C and '®-180
computed at the same energies and with the same inputs of Fig. 1.
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the only available experimental data [55] obtained on
carbon targets as part of the LEAR run of experiments.
The measured asymmetries are small, statistically compat-
ible with zero, and suggest smaller polarisation parameters
than those predicted by some NN phenomenological
potential models (see Fig. 11 of Ref. [17]). Our predictions,
on the other hand, are consistent with measurements.

In summary, a fully microscopic OP for pA scattering
has been derived within the Watson multiple scattering
theory using the NN, NN, and 3N chiral interactions as
the only input for our calculations. The new NN inter-
action derived up to N°LO has been used in our calcu-
lations to obtain the 75y scattering matrix needed in
Eq. (1). We tested our OP in comparison with the available
experimental data for antiproton elastic scattering off “He,
12C, and '®1%0. Our results are in good agreement with
data and are able to reproduce the correct angular position
of the diffraction minima. The OP has been also computed
using the pN interaction at lower orders in the chiral
expansion to test the convergence of our results. As
obtained in previous pA calculations, also in this case
for a good description of the data it is mandatory to use an
interaction derived at least up to N’LO. As a concluding
remark, we mention that at this stage new questions arise
about the importance of p/NN interactions in both struc-
ture and reaction calculations.
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