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We calculate the complete quark and gluon cusp anomalous dimensions in four-loop massless QCD
analytically from first principles. In addition, we determine the complete matter dependence of the quark
and gluon collinear anomalous dimensions. Our approach is to Laurent expand four-loop quark and gluon
form factors in the parameter of dimensional regularization. We employ finite field and syzygy techniques
to reduce the relevant Feynman integrals to a basis of finite integrals, and subsequently evaluate the basis
integrals directly from their standard parametric representations.
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Introduction.—While the beta function of quantum
chromodynamics (QCD) determines the running of the
coupling due to ultraviolet divergences, the cusp anoma-
lous dimensions of the quark and gluon determine the
leading infrared singularities of massless scattering ampli-
tudes [1]. To second order in the strong coupling constant,
these anomalous dimensions were already known implic-
itly before the appearance of Ref. [1] from investigations of
the next-to-leading Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) splitting functions [2–7].
The phenomenological relevance of the cusp anomalous

dimensions to the resummation of prominent QCD observ-
ables is well established, considered in some cases at the
next-to-next-to-next-to-leading (four-loop) logarithm level
a decade ago [8,9], but their calculation to higher orders in
QCD perturbation theory is a challenging task. After the
completion of the two-loop calculations, roughly 20 years
elapsed before the appearance of a first analytic calculation
of the three-loop cusp anomalous dimensions [10,11] from
the three-loop DGLAP splitting functions. Over the last few
years, a number of approximate numerical [12,13] and
partial analytic [14–24] results have appeared at the four-
loop level; just as for the beta function of massless QCD,
now known to five-loop order after years of intensive
investigation [25–28], a high degree of automation and
significant computer resources enabled this progress.
Up to three loops, the cusp anomalous dimensions of the

quark and gluon are related to each other by the quadratic
Casimir scaling principle [29–33]. The authors of Ref. [13]
conjectured that this no longer holds at the four-loop level,
but is rather generalized to accommodate novel color

structures built out of quartic Casimir operators. This
generalized Casimir scaling proposal was recently corrobo-
rated by two independent theoretical studies [34,35]. Using
further conjectural input from Ref. [23], an analytic form of
the four-loop QCD cusp anomalous dimensions was put
forward very recently in Ref. [36].
The primary goal of this Letter is to definitively calculate

the four-loop QCD cusp anomalous dimensions analyti-
cally from first principles. We follow Ref. [37] and extract
the cusp anomalous dimensions from expansions of mass-
less four-loop quark and gluon QCD form factors through
to Oðϵ−2Þ. We employed new methods for the reduction to
master integrals [17,24,38], and we tailored the choice of
master integrals to simplify their evaluation [39–41].
Our approach relies on the existence of a basis of

integrals which are finite as ϵ → 0 and sufficiently well
behaved with respect to the transcendental weight filtration.
In such a basis, many of the most complicated integral
topologies (see Fig. 1) do not contribute to the higher-order
poles in ϵ. To illustrate this point, consider the result
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in 4 − 2ϵ dimensions given in the conventions of Ref. [41].
In our basis of finite integrals, this integral topology first
contributes to the Laurent expansion at order ϵ−1. Hence,
we were able to produce Eq. (1) from the subtopologies
without having to actually integrate any integral of the
topology itself.
We also observe that for four-loop Feynman diagrams

containing at least one closed fermion loop, our finite basis
integrals in the two most complicated topologies (see
Fig. 1) only contribute to the finite parts, Oðϵ0Þ. The
remaining finite basis integrals can be integrated with the
program HyperInt [42], and so we obtained the complete
matter dependence of the ϵ−1 poles of the form factors. It
only involves zeta values of weight at most 6.
As a consequence, we are able to offer new results on

another well-studied pair of quantities, the quark and gluon
collinear anomalous dimensions (see Ref. [43] for the QCD
results up to three loops). Historically, the color dipole con-
jecture of Refs. [30–33] offered an enticingly simple
prediction for the ϵ−1 poles of quite general massless
QCD scattering amplitudes. In the color dipole picture,
simple singular dressing factors for each external parton
(quark or gluon jet functions) contribute poles of collinear
origin to the ϵ−1 pole of the logarithm of the amplitude
under consideration. The collinear anomalous dimensions
fix the ϵ−1 poles of these jet functions.
While we now know that the ϵ−1 poles of QCD

amplitudes receive color quadrupole corrections at three-
loop order and beyond from the soft sector [44–46], the
four-loop collinear anomalous dimensions have long been

of interest in planar N ¼ 4 super-Yang-Mills theory
[47,48], where the dipole conjecture does appear to hold
[49]. Four-loop collinear anomalous dimensions in QCD
will not be needed for phenomenological purposes anytime
soon, but partial results for the quark case have nevertheless
already appeared [15,18,19,21]. We give complete analytic
results for the matter dependence of the four-loop quark
and gluon collinear anomalous dimensions.
Setup and integral reduction.—We study quantum cor-

rections in massless QCD to decays of both photons and
Higgs bosons, i.e., the processes γ�ðqÞ → qðp1Þq̄ðp2Þ and
hðqÞ→gðp1Þgðp2Þ, with p2

1¼p2
2¼0 and q2¼ðp1þp2Þ2.

We define form factors by interfering the bare L-loop
scattering amplitudes with the tree amplitudes, summing
over polarizations and colors, and then normalizing to the
corresponding tree-level results,

F̄ r
bareðαbares ; q2; μ2ϵ ; ϵÞ

¼ 1þ
X∞

L¼1

�
αbares

4π

�
L
�

4πμ2ϵ
−q2eγE

�
Lϵ

F̄ r
LðϵÞ: ð2Þ

Here and in what follows, r ¼ q or g. We work in con-
ventional dimensional regularization with ϵ ¼ ð4 − dÞ=2
and expand in the bare strong coupling constant, αbares .
Further, μϵ denotes the ’t Hooft scale and γE is Euler’s
constant. We consider the color structures of the four-loop
corrections and find for the bare quark form factor

FIG. 1. All irreducible top-level integral topologies occurring in our form factors. Out of these, only the two framed topologies
eventually contribute to the ϵ−2 poles of the form factors and thus to the cusp anomalous dimensions for our choice of basis integrals.
The topologies in the first two rows are integrable directly in Feynman parameters with HyperInt. For all but the last two topologies,
we found simple changes of variables that render them accessible (“linearly reducible”) as well.
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F̄ q
4ðϵÞ ¼ N3

fCFc
q
1ðϵÞ þ N2

fCACFc
q
2ðϵÞ þ N2

fC
2
Fc

q
3ðϵÞ þ NqγNf

dabcF dabcF

NF
ðϵÞ þ Nf

dabcdF dabcdF

NF
cq5ðϵÞ

þ NfC2
ACFc

q
6ðϵÞ þ NfCAC2

Fc
q
7ðϵÞ þ NfC3

Fc
q
8ðϵÞ þ NqγCA

dabcF dabcF

NF
cq9ðϵÞ þ NqγCF

dabcF dabcF

NF
cq10ðϵÞ

þ C3
ACFc

q
11ðϵÞ þ C2

AC
2
Fc

q
12ðϵÞ þ CAC3

Fc
q
13ðϵÞ þ C4

Fc
q
14ðϵÞ þ

dabcdA dabcdF

NF
cq15ðϵÞ; ð3Þ

and the bare gluon form factor,

F̄ g
4ðϵÞ ¼ N3

fCAc
g
1ðϵÞ þ N3

fCFc
g
2ðϵÞ þ N2

fC
2
AðϵÞcg3 þ N2

fCACFc
g
4ðϵÞ þ N2

fC
2
Fc

g
5ðϵÞ þ N2

f
dabcdF dabcdF

NA
cg6ðϵÞ

þ NfC3
Ac

g
7ðϵÞ þ NfC2

ACFc
g
8ðϵÞ þ NfCAC2

Fc
g
9ðϵÞ þ NfC3

Fc
g
10ðϵÞ þ Nf

dabcdA dabcdF

NA
cg11ðϵÞ

þ C4
Ac

g
12ðϵÞ þ

dabcdA dabcdA

NA
cg13ðϵÞ: ð4Þ

We denote the number of light quark flavors by Nf and
their charge-weighted sum normalized to the charge of the
external quark q, by Nqγ ≡P

q0 eq0=eq. The color decom-
positions (3) and (4) follow the notation and conventions of
Ref. [50]; the Form program Color.h was used to carry
out the color algebra assuming a theory with a general
simple compact gauge group. For the case of SUðNcÞ, we
have dabcF dabcF ¼ ðN2

c − 1ÞðN2
c − 4Þ=ð16NcÞ and all other

invariants are given in Eqs. (12) and (13) of Ref. [51].
Without loss of generality, we set TF ¼ 1=2 throughout.
The color coefficients in Eqs. (3) and (4) are derived as

follows. We generate the four-loop Feynman diagrams with
the program QGraf [52] and obtain a total of 5728 (43
220) diagrams for the quark (gluon) form factor. We
encounter 100 12-line top-level topologies and match all
of the diagrams to just ten complete sets of 18 denomi-
nators with Reduze 2 [53–55]. Here, one such set of
denominators may cover several 12-line top-level topol-
ogies. We carry out all numerator algebra with Form 4 [56]
and arrive at linear combinations of scalar Feynman
integrals with up to six inverse propagators.
We exploit linear relations to reduce the integrals to

master integrals, using the program Finred by the first
author. For the reduction of the amplitude, we employ
conventional momentum space integration by parts,
Lorentz, and sector symmetry identities [57–60]. In some
instances, we also found it useful to apply syzygy tech-
nology [61–65]. For the basis change to finite integrals, we
made heavy use of first- and second-order annihilators
[66,67] in the Lee-Pomeransky representation [68]. Instead
of resorting to computer algebra systems, we compute
syzygies with linear algebra [62,69] using Finred as a
linear solver. This method allows us to reduce integrals
with high powers of propagators and no numerators.
The program Finred implements finite field sampling

and rational reconstruction [17,38] and supports distributed
computations to efficiently solve large linear systems. We

solved sectors with more than 108 equations and reconstruc-
ted identities from up toOð40Þ 64-bit-based prime fields and
Oð600Þ values for the space-time dimension. Including the
identities for basis changes and dimensional shifts, our com-
pressed reduction tables consume Oð10 TBÞ on disk.
In total, we find 294 master integrals. Twenty of the top-

level topologies turn out to be irreducible (see Fig. 1) with
up to four master integrals per topology. We would like to
point out an interesting relation between master integrals of
three distinct nine-line topologies,

ð5Þ
which can be obtained from a common parent topology.
As a check of our reductions, we calculated the matter-

dependent contributions to the quark and gluon form
factors in a general Rξ gauge and verified explicitly that
terms proportional to ξ cancel. This cancellation occurred
only after accounting for relations between color invariants
(for general Lie algebras) and Eq. (5).
Results.—We insert our analytical solutions for the finite

master integrals to obtain ϵ-expanded expressions for the
form factors. Our main new results are extracted from the
Oðϵ−1Þ coefficients proportional to Nf or Nqγ on the second
lines of Eqs. (3) and (4), and the Oðϵ−2Þ coefficients of the
color factors on the second and third lines of Eqs. (3) and (4).
Explicit expressions for these coefficients are provided in the
Supplemental Material [70]. The coefficients on the first
lines of Eqs. (3) and (4) have already been calculated through
to Oðϵ0Þ by a subset of the authors [17,24] and others
[15,19,21]. For the sake of completeness, we also calculated
the quartic color coefficient cq5ðϵÞ through to Oðϵ0Þ our-
selves to confirm the result of Ref. [21].
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We determine the four-loop cusp anomalous dimensions in the framework of Ref. [71] from the ϵ−2 poles. Our results for
Γq
4 and Γg

4 confirm the generalized Casimir scaling principle, so that we can write them together as

Γr
4 ¼ N3

fCR

�
64

27
ζ3 −

32

81

�
þ N2

fCACR

�
−
224

15
ζ22 þ

2240

27
ζ3 −

608

81
ζ2 þ

923

81

�
þ N2

fCFCR

�
64

5
ζ22 −

640

9
ζ3 þ

2392

81

�

þ NfC2
ACR

�
2096

9
ζ5 þ

448

3
ζ3ζ2 −

352

15
ζ22 −

23 104

27
ζ3 þ

20 320

81
ζ2 −

24 137

81

�

þ NfCACFCR

�
160ζ5 − 128ζ3ζ2 −

352

5
ζ22 þ

3712

9
ζ3 þ

440

3
ζ2 −

34 066

81

�
þ NfC2

FCR

�
−320ζ5 þ

592

3
ζ3 þ

572

9

�

þ Nf
dabcdF dabcdR

NR

�
−
1280

3
ζ5 −

256

3
ζ3 þ 256ζ2

�
þ dabcdA dabcdR

NR

�
−384ζ23 −

7936

35
ζ32 þ

3520

3
ζ5 þ

128

3
ζ3 − 128ζ2

�

þ C3
ACR

�
−16ζ23 −

20 032

105
ζ32 −

3608

9
ζ5 −

352

3
ζ3ζ2 þ

3608

5
ζ22 þ

20 944

27
ζ3 −

88 400

81
ζ2 þ

84 278

81

�
; ð6Þ

where R ¼ F if r ¼ q and R ¼ A if r ¼ g. Only color
structures expected from the Wilson loop picture appear.
Our result in Eq. (6) agrees with Eq. (6.3) of [36], which is

based on a calculation of the cusp anomalous dimension of
N ¼ 4 super Yang-Mills theory, a supersymmetric decom-
position [14,22], generalized Casimir scaling, see also
[13,34,35], a conjecture for the NfCACFCR term [23],
and previously known results for the other Nf-dependent
terms [14,16,17,19–22,24]. Another strong independent
check is given by comparing our result to the approximate
numerical analysis of Refs. [12,13]. We find very solid
agreement with Table 1 of Ref. [13], suggesting that their
error estimates were actually conservative.
It was pointed out already in Ref. [36] that Eq. (6)

correctly predicts the four-loop cusp anomalous dimension
of the N ¼ 4 model [36,72] through the principle of
maximal transcendentality [73,74]. Indeed, in the notation
of this Letter, Eq. (6.1) of Ref. [36] takes the form

ΓN¼4
4 ¼ dabcdA dabcdA

NA

�
−384ζ23 −

7936

35
ζ32

�

þ C4
A

�
−16ζ23 −

20032

105
ζ32

�
;

which matches precisely the terms of Eq. (6) that have the
highest transcendental weight (6).

The collinear anomalous dimensions can be read off
from the ϵ−1 poles of the logarithm of the renormalized
form factors. We confirmed that all higher-order poles are
as predicted by Eq. (6.22) from Ref. [75] in terms of the
cusp and lower-loop collinear anomalous dimensions,
together with the coefficients βL−1 of the beta function
[51,76]. Equivalently, the collinear anomalous dimensions
are defined as

γr4 ¼ Gr
4½0� − β0Gr

3½1� − β1Gr
2½1� − β2Gr

1½1�
þ β20G

r
2½2� þ 2β0β1Gr

1½2� − β30G
r
1½3� þ 8β3δgr ð7Þ

in the framework of Ref. [71] [see also Eq. (20) of
Ref. [77] ]. Here, Gr

L½k� denotes the coefficient of ϵk in
the series Gr

LðϵÞ defined in Eqs. (2.14)–(2.17) of Ref. [71]
in terms of the bare form factors. These coefficients
can be extracted from the four-loop expansions in our
Supplemental Material [70], together with the well-known
higher orders in ϵ of the bare one-, two-, and three-loop
form factors given in Refs. [75,78–80] or Ref. [37].
Note that our γq4 and γg4 are (−2) times the four-loop

collinear anomalous dimensions defined in Ref. [43],
and Refs. [15,18,19,21] follow Ref. [43] rather than
Refs. [71,81,82]. We find

γq4 ¼ N3
fCF

�
128

135
ζ22 þ

1424

243
ζ3 þ

16

27
ζ2 −

37 382

6561

�
þ N2

fC
2
F

�
1040

9
ζ5 −

224

9
ζ3ζ2 −

8032

135
ζ22 −

4232

81
ζ3 þ

1972

27
ζ2 þ

9965

486

�

þ N2
fCACF

�
−
1184

9
ζ5 þ

256

9
ζ3ζ2 þ

152

15
ζ22 þ

14 872

243
ζ3 þ

41 579

729
ζ2 −

97 189

17 496

�

þ NfC2
ACF

�
6916

9
ζ23 þ

24 184

315
ζ32 þ

6088

27
ζ5 −

3584

9
ζ3ζ2 −

17 164

45
ζ22 þ

140 632

243
ζ3 −

445 117

729
ζ2 þ

326 863

1944

�

þ NfCAC2
F

�
−
3400

3
ζ23 þ

5744

35
ζ32 −

4472

3
ζ5 þ

3904

9
ζ3ζ2 þ

105 488

135
ζ22 −

23 518

81
ζ3 þ

673

27
ζ2 −

1 092 511

972

�
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þ NfC3
F

�
368ζ23 −

117 344

315
ζ32 þ

3872

3
ζ5 −

512

3
ζ3ζ2 −

668

5
ζ22 −

1120

9
ζ3 þ 322ζ2 þ

27 949

108

�

þ Nf
dabcdF dabcdF

NF

�
1216

3
ζ23 þ

9472

315
ζ32 −

21760

9
ζ5 þ 128ζ3ζ2 −

320

3
ζ22 −

5312

9
ζ3 þ

4544

3
ζ2 − 384

�
þOðN0

fÞ ð8Þ

for the matter-dependent parts of the quark collinear anomalous dimension and

γg4 ¼ N3
fCA

�
256

135
ζ22 −

400

243
ζ3 −

16

81
ζ2 −

15 890

6561

�
þ N3

fCF

�
308

243

�
þ N2

f
dabcdF dabcdF

NA

�
1024

3
ζ3 −

1408

9

�

þ N2
fC

2
A

�
−
1024

9
ζ5 − 32ζ3ζ2 þ

3128

135
ζ22 þ

37 354

243
ζ3 −

13 483

729
ζ2 þ

611 939

17 496

�

þ N2
fCACF

�
304

9
ζ5 þ

32

3
ζ3ζ2 þ

128

45
ζ22−

1688

81
ζ3 −

172

9
ζ2 þ

1199

18

�
þ N2

fC
2
F

�
−
352

9
ζ3 þ

676

27

�

þ NfC3
A

�
−
596

9
ζ23 þ

148 976

945
ζ32 þ

16 066

27
ζ5 þ 148ζ3ζ2−

69 502

135
ζ22 −

260 822

243
ζ3 þ

155 273

729
ζ2 −

421 325

1944

�

þ NfC2
ACF

�
152ζ23 þ

5632

315
ζ32 þ

8

9
ζ5 − 176ζ3ζ2 −

1196

45
ζ22 þ

29 606

81
ζ3þ

3023

9
ζ2 −

903 983

972

�

þ NfCAC2
F

�
−80ζ23 −

320

7
ζ32 −

1600

3
ζ5 þ

148

5
ζ22 þ

1592

3
ζ3 − 2ζ2 þ

685

12

�
þ NfC3

Fð46Þ

þ Nf
dabcdA dabcdF

NA

�
1216

3
ζ23 −

14 464

315
ζ32 −

30 880

9
ζ5 þ 1216ζ3ζ2 þ

2464

15
ζ22 þ

2560

9
ζ3 − 64ζ2 þ

448

9

�
þOðN0

fÞ ð9Þ

for the gluon collinear anomalous dimension. Several
useful cross-checks on Eq. (8) exist, including results for
the OðN3

fÞ and OðN2
fÞ terms of γq4 [15,19] (see also

Refs. [17,24]), the result of Ref. [21] for the coefficient
of the quartic Casimir invariant in Eq. (8), the result of
Ref. [18] for the large-Nc limit of the OðNfÞ terms of γq4 ,
and the very recent numerical estimate of the ϵ−1 pole of the
full four-loop quark form factor [83]. Our results are in
perfect agreement with the available literature. Further-
more, we note that the three color structures proportional to
Nqγ drop out of Eq. (8) in a nontrivial way.
While no independent results for γg4 are immediately

available, Ref. [84] provides the OðN3
fÞ part of the four-

loop virtual anomalous dimensions, Br
4, allowing for an

alternative extraction of the first two terms of Eq. (9) from
the relation [85,86]

γr4 ¼ 2Br
4 þ fr4; ð10Þ

where fr4 denotes the four-loop eikonal anomalous dimen-
sions of massless QCD. Relating fg4 to fq4 by Casimir
scaling, we obtain the relevant terms in γg4 from that in γq4
and find agreement with the direct calculation.
We observe that all expansion coefficients of our finite

basis integrals which contribute to the ϵ−1 poles of the
matter-dependent color structures from the first two lines of
Eqs. (3) and (4) also contribute to the ϵ−2 poles. The checks

mentioned earlier for the cusp anomalous dimensions,
therefore, also test our results for both collinear anomalous
dimensions.
Our results for the form factors, anomalous dimensions,

and the Gr
LðϵÞ functions are provided in Mathematica

and Maple format [70].
Summary.—We presented the first complete ab initio

analytic calculation of the four-loop quark and gluon cusp
anomalous dimensions. In contrast to previous analytic work
on the subject, our extraction of the gluon cusp anomalous
dimension did not rely on any conjectured property of the
cusp anomalous dimensions. It therefore provides a direct
analytic confirmation of the generalized Casimir scaling
principle [13,34,35] at the four-loop level. Finally, we
presented the full analytic matter dependence of the four-
loop quark and gluon collinear anomalous dimensions.
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