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The normal density of a translation-invariant superfluid often vanishes at zero temperature, as is
observed in superfluid Helium and conventional superconductors described by BCS theory. Here we show
that this need not be the case. We investigate the normal density in models of quantum critical superfluids
using gauge-gravity duality. Models with an emergent infrared Lorentz symmetry lead to a vanishing
normal density. On the other hand, models which break the isotropy between time and space may enjoy a
nonvanishing normal density, depending on the spectrum of irrelevant deformations around the underlying
quantum critical ground state. Our results may shed light on recent measurements of the superfluid density
and low energy spectral weight in superconducting overdoped cuprates.
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Introduction.—Much of traditional superfluid and BEC
superconductor phenomenology can be explained by
Landau and Tisza’s simple two-fluid hydrodynamical
model [1,2] and its relativistic generalizations [3–9]. The
Landau-Tisza model describes the superfluid as a mixture
of two fluid components, the normal, dissipative state with
charge density ρn and velocity uμ and the dissipationless
superfluid with charge density ρs and flow velocity vμ. The
total charge density is the sum of both components,
ρ ¼ ρn þ ρs. Experiments and theoretical calcuations in
3He, 4He, cold atom experiments, and conventional BCS
superconductors all lead to the result that the system
becomes entirely superfluid at zero temperature, i.e., that
the normal density vanishes:

ρð0Þn ≡ lim
T→0

ρn ¼ 0: ð1Þ

In [10,11], two arguments were given to account for (1).
One argument used only the superfluid hydrodynamic
description, the other assumed a weakly coupled,
Galilean, time-reversal invariant, single species superfluid.
The expectation (1) was called into question by recent

experimental reports of anomalously low superfluid den-
sities in overdoped high-Tc superconductors [12] (see
[13,14] for commentary). Subsequent spectroscopic studies
[15] also revealed very little loss of low energy spectral
weight at low temperatures in the superconducting phase,

suggesting a nonvanishing ρð0Þn . While the authors of
[16–18] attributed this to disorder effects that can be

captured in the so-called dirty BCS theory, fitting the
experimental data relies on an ad hoc renormalization of
the Drude weight [17]. Thus, no theoretical consensus has
been reached on the experimental findings of [12,15], see
also [19,20].
In this Letter, we tackle this question by combining

methods using superfluid hydrodynamics and gauge-
gravity duality. We review translation and time-reversal
invariant superfluid hydrodynamics and show that the
hydrodynamic equations are not enough to conclude that

(1) is true. Instead, determining ρð0Þn requires knowledge of
the infrared (IR) equation of state. Using holographic
models with quantum critical dynamics in the infrared as
examples, we show (1) holds for strongly coupled super-
fluids with an emergent Lorentz symmetry, in agreement
with [10,11]. This is also consistent with the superfluid
effective field theory discussed in [21–23]. On the other
hand, we find that nonrelativistic quantum critical systems

with dynamical critical exponent z > 1 can have ρð0Þn ≠ 0.

Hence, we conclude that a nonvanishing ρð0Þn is not a result
of the breakdown of the two-fluid model but rather a result
of the quantum critical nature of the IR of these superfluids.
Even after explicitly breaking translations, we show this
conclusion does not change. These findings may suggest
the anomalously low superfluid density and suppression of
spectral weight observed in [12,15] might be a consequence
of the quantum critical properties of the superconducting
phase of overdoped cuprates.
On a more formal level, our results indicate that the

quantum effective action of Lifshitz superfluids differs
significantly from that of their Lorentzian cousins [21],
which opens exciting perspectives for future research on the
theory of superfluids.
ρð0Þn in superfluid hydrodynamics.—In this section, we

review relativistic, charged, superfluid hydrodynamics,
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following [24]. For our purposes, it is sufficient to work at
the nondissipative level. Our results apply to any theory
with translation invariance, including Galilean invariant
theories. Relativistic symmetry leads to simpler notation
and aligns nicely with our holographic example. A more
thorough derivation can be found in [25].
The system is described by the following equations

(setting the speed of light c ¼ 1)

∂μTμν ¼ 0; ∂μjμ ¼ 0;

uμ∂μφþ μ ¼ 0; ∂μðsuμÞ ¼ 0: ð2Þ
The first line expresses the local conservation laws: the
conservation of the fluid stress tensor and the conservation
of the U(1) symmetry current, respectively. The last line
states the constraints from gauge invariance and thermo-
dynamics: respectively, a “Josephson equation" which
relates the time component of the background gauge field
to the phase of the superfluid, φ, and the statement that in
equilibrium, the entropy density is conserved. For simplic-
ity, we have turned off external sources, which in particular
corresponds to a choice of gauge Aμ ¼ 0 for the external
gauge field. The conclusions of this Letter are independent
of the choice of gauge, see [25].
Hydrodynamics states that these equations can be solved

in terms of a derivative expansion of local thermodynamic
variables and the fluid velocity. At nondissipative order,
thermodynamics of the equilibrium state fixes

Tμν ¼ ðϵn þ PÞuμuν þ Pημν þ ρs
μ
∂μφ∂νφ;

jμ ¼ ρnuμ þ
ρs
μ
∂μφ: ð3Þ

The total charge density is the sum of the normal, ρn, and
superfluid, ρs, densities. The distinction between ρn and ρs
follows from the expectation that uμ is the velocity of
entropy flow which is carried purely by the normal
component. The normal energy density, ϵn, and pressure,
P, satisfy the Smarr and Gibbs relations,

ϵn þ P ¼ Tsþ ρnμ;

dP ¼ sdT þ ρdμ −
ρs
2μ

dð∂νφ∂νφþ μ2Þ: ð4Þ

We perturb about equilibrium, writing T ¼ T0 þ δT,
μ ¼ μ0 þ δμ, uμ ¼ ð1; δuiÞμ, φ ¼ −μ0tþ δφ. The fluc-
tuation equations can be massaged into the form

0 ¼ ðμρn þ sTÞ∂tδui þ ρs∂t∂iδφþ s∂iT þ ρ∂iδμ: ð5Þ
If s → 0 as T → 0, consistency of this equation requires

ρð0Þn ∂tðμδui − ∂iδφÞ ¼ 0: ð6Þ
If δui and δφ were allowed to fluctuate independently, we

would conclude ρð0Þn ¼ 0, as in [10,11].

However, introducing an external source for φ through
δH ¼ R

d2xsφ∂φ leads to siφ ¼ ρsð∂iφ − μuiÞ [25,26].
Setting the external source to zero, the superfluid velocity
vi ≡ ∂iφ=μ is aligned with the fluid velocity ui and
equation (6) is automatically satisfied. Therefore, consis-
tent coupling of the hydrodynamics to external sources

evades the conclusion that ρð0Þn ¼ 0.
The fluctuations lead to an electrical conductivity at

nondissipative order [35],

σðωÞ ¼ i
ω
GR

JxJxðω; 0Þ ¼
i
ω

�
ρ2n

μρn þ sT
þ ρs

μ

�
: ð7Þ

In general, contact terms may affect the conductivities [36],
but this is not the case for the electric conductivity of
interest here. Importantly, limT→0 ωIm½σ� ¼ ρ=μ, irrespec-

tive of whether ρð0Þn ¼ 0 or not. Here, as well as everywhere
in the rest of our Letter, we take the ω → 0 limit before the
T → 0 limit. The Kramers-Kronig relations require that
Re½σ� also has a delta function as ω → 0 with the same
weight. Equation (7) applies equally well to superconduc-
tors with a dynamical gauge field, as the conductivity is
measured with respect to the total electric field, which
relates it to the unscreened retarded Green’s function.
If we explicitly break translations weakly, the momen-

tum relaxes slowly with an inverse lifetime Γ and the
conductivity becomes

σðωÞ ¼ ρ2n
μρn þ sT

1

Γ − iω
þ ρs

μ

�
i
ω

�
: ð8Þ

The imaginary pole is now proportional only to the

superfluid density, though this says nothing about ρð0Þn .

Importantly, there are no inconsistencies if ρð0Þn ¼ 0 when
translations are broken, as we will demonstrate.
Holographic quantum critical superfluids.—Holography

relates the low energy dynamics of a finite temperature
strongly interacting gauge theory with a large number of
colors in dþ 1 spacetime dimensions to the dynamics of a
classical gravitational system in dþ 2 dimensions with a
black hole [37,38]. While explicit examples are known
from string theory that fix the action of the gravitational
theory, applied holography posits that a consistent set of a
small number of fields, such as scalars and U(1) gauge
fields, coupled to gravity in (dþ 2) anti–de Sitter space-
time is able to capture the universal low energy dynamics of
a large number of strongly interacting quantum systems
near a quantum critical point or phase [39].
In particular, these quantum critical theories should be

characterized by the dependence of correlation functions on
certain universal exponents, for instance the dynamical
critical exponent, z, the hyperscaling violation parameter θ,
and the spatial dimension d. Holographically, these expo-
nents are captured by an extremal (zero temperature)
horizon of the form [40,41]
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ds2 ¼ r2ðθ=dÞ−2
�
−L2

t
dt2

r2z−2
þ L̃2dr2 þ L2

xdx2
�
; ð9Þ

where the horizon is at r → ∞ when z ≥ 1. The radial
coordinate r functions as a renormalization scale so that
under scale transformations,

ðr; xiÞ → λðr; xiÞt → λzt ⇒ ds2 → λ2
θ
dds2: ð10Þ

This implies that the thermodynamic parameters have
dimension ½T� ¼ z and ½s� ¼ d − θ and s ∼ Tðd−θÞ=z.
A very general gravitational model that can lead to these

extremal solutions is the following [42],

S ¼
Z

ddþ2x
ffiffiffiffiffiffi
−g

p �
R −

ZðϕÞ
4

F2 − jDηj2 − 1

2
ð∂ϕÞ2

− Vðϕ; jηjÞ − YðϕÞ
2

Xd
i¼1

ð∂ψ iÞ2
�
: ð11Þ

Here, AM is a U(1) gauge field with field strength FMN ¼
∂MAN − ∂NAM. The field η is a complex scalar with U(1)
charge Q and covariant derivative Dη ¼ ð∂M − iQAMÞη.
When jηj ≠ 0, the U(1) symmetry is broken and the dual
theory can be thought of as a superfluid [27,43]. The field ϕ
is a neutral scalar called the dilaton which has a source on
the boundary ϕs. The fields ψ I are chosen to have linear
dependence on the spatial dimensions, ψ i ¼ mxjδij so that
when Y ≠ 0, they explicitly break translation but not
rotation invariance [28]. The gauge field is chosen only
to have a background time component whose value at the
boundary of anti–de Sitter sets the chemical potential, μ,
which sources a charge density, ρ. We have set 16πG ¼ 1.
See [25] for further details.
The relativistic invariant equations of superfluidity

described above were shown to hold in holographic models
where the transport coefficients can be derived from the
gravitational dual to the boundary fluid [24,29,44–47].
Though the early holographic models focused on the
original holographic superfluid [27,43,48], the bulk action
can be generalized as in (11) to include running couplings
and bounded scalar potentials [42,49–51]. We find that the
two-fluid hydrodynamic model still works well in describ-
ing these models.
The solutions (9) are found for potentials which behave

in the IR as

Yðϕ → ∞Þ → Y0eλϕ; Vðϕ; jηjÞ → V0e−δϕ;

Zðϕ → ∞Þ → Z0eγϕ; ϕ ¼ κ lnðrÞ: ð12Þ
The gauge field and translation breaking scalars can be

engineered to be marginal or irrelevant deformations of the
IR critical phase [41,52]. We will be concerned with phases
where the charged scalar is irrelevant in the IR, taking the
asymptotic value η0 [42]. This implies that the scaling
exponents are the same in the superfluid as in the normal

phase, so that many of the scaling properties at low
temperature are inherited from the normal phase.
Normal densities in holographic superfluids.—To find

the normal density (see also [44]), we perturb our system
by turning on a spatially homogeneous infinitesimal
external electric field in the x direction, Exe−iωt, sourcing
both an electric and a momentum current [25]. As ω → 0,
the equation for the momentum current enforces
hTtxi ¼ −ρδξx, where δξx ¼ ∂xφ − Ax is gauge invariant,
and given by the electric field δξx ¼ Ex=ðiωÞ in a gauge
where φ ¼ 0, which is the gauge we work in. This response
requires that μδux ¼ δξx [25].
In the companion paper [53], we explore transport in the

superfluid phases of the holographic model (11) for general
potentials in greater detail. Here, for illustrative purposes,
we present an explicit example in d ¼ 2 that leads to

ρð0Þn ≠ 0 and one that leads to ρð0Þn ¼ 0, including when
translations are broken. Specifically, we use the model of
[42] with

Z¼eϕ=
ffiffi
3

p
; V¼−6coshðϕ=

ffiffiffi
3

p
Þ−2jηj2þjηj4; Y¼0:

ð13Þ

Upon varying the dilaton source, this model has two IR
phases characterized by critical exponents,

�
z;θ;

z
θ

�
¼ðþ∞;−∞;−1Þ; or ðz;θÞ¼ð1;−1Þ: ð14Þ

In the first case, we first need to redefine r ↦ r1=z before
sending z → þ∞ in (9). The IR behavior of ϕ in the two
phases is ϕ ¼ � ffiffiffi

3
p

lnðrÞ. In the first case, ZðϕÞ diverges
and leads to a finite electric flux, ρð0Þin , from the extremal
horizon, suggesting a “fractionalization” of charged
degrees of freedom into a subset confined in the condensate
and subset deconfined in the thermal bath hidden by the
horizon [54,55]. In the second case, ZðϕÞ → 0 causing
the flux to vanish in the IR and all charged degrees of
freedom are confined into the charged condensate in a
“cohesive” phase.
These two cases can also be distinguished by the

vanishing of ρð0Þn in the cohesive phase and nonvanishing

of ρð0Þn in the fractionalized phase. We emphasize that,

despite their apparent similarities, ρð0Þn and ρð0Þin are not
immediately related. The first is a quantity defined in the
two-fluid hydrodynamic model while the second is a
microscopic measurement of the uncondensed degrees of
freedom. This is analogous to BEC superconductivity
where not all electrons condense into Cooper pairs, yet
ρn → 0 [56]. In fact, in [53], we discuss pure Lifshitz

superfluid solutions [49,50] in which ρð0Þin vanishes while

ρð0Þn does not, for sufficiently large z.

PHYSICAL REVIEW LETTERS 124, 161604 (2020)

161604-3



After solving for the bulk δξxðrÞ, we combine (7) with the
knowledge of the total background charge density ρ ¼
ρs þ ρn to extract both ρn and ρs. Our numerical results
are shown in Fig. 1. In [53], we show analytically that

fractionalized∶ ρn ≃
ρð0Þn

μ2
þ #T1−θ

zþ; � � � ; ð15Þ

cohesive∶ ρn ≃
1 − c2IR
c2IR

sT
μ
þ; � � � ∼ Tð2þz−θÞ=z; ð16Þ

where ρð0Þn depends on UV parameters, for instance, the
source, ϕs, and cIR ≡ Lt=Lxr

1−z
h ∼ T1−1=z is the light cone

velocity in the IR. The ... indicate terms from more irrelevant
deformations of the IR geometry. Interestingly, the leading
order temperature dependencies of the normal density
behave as power laws with exponents determined by the
underlying IR phase, characteristic of quantum critical
systems. This is in contrast to BCS superconductivity, in
which it is found that ρn is exponentially suppressed [10]. On
the other hand, in 4He, the normal (mass) density is
controlled by phonons [the goldstones from the U(1) break-
ing] so that ρn ¼ ðsTÞ=c2p þOðc−1p Þ where the coefficient is
the phonon speed of sound, cp [57]. This is identical to (16),
trading cIR ↦ cp and taking the limit cp ≪ 1.

In [53], we find that ρð0Þn depends on the competition
between two terms proportional to sT and c2IR, respectively

[58]. If c2IR dominates at low T, then ρð0Þn ≠ 0. Otherwise,

ρð0Þn ¼ 0 and to leading order ρn is given by (16). This result
is consistent with the relativistic superfluid effective field
theory [23], but is also true for z ≠ 1. For the quantum
critical superfluids presented here, fractionalized phases

(ρð0Þin ≠ 0) always have c2IR > sT and hence ρð0Þn ≠ 0,

whereas for cohesive phases (ρð0Þin ¼ 0), this occurs for:

cohesive∶ z < dþ 2 − θ ⇒ ρð0Þn ¼ 0: ð17Þ
We observe that when (17) is violated, (16) would naïvely

lead to a divergent ρð0Þn . Instead, as we have just explained, a

more careful calculation leads to a finite ρð0Þn ≠ 0.

Generically, many irrelevant deformations of the critical
IR geometry compete to drive the system toward the UV. In
particular, while a universal deformation proportional to sT
always exists, dangerously irrelevant operators may control
the temperature dependence of thermodynamic or transport
observables [41,59,60]. It is then remarkable that the
criteria in (17) leads to the universal temperature depend-
ence (16) for cohesive phases.

As a final illustration that ρð0Þn ≠ 0 is a signature of
criticality rather than, for instance, disorder, we explicitly
break translations in (11), with YðϕÞ ¼ exp ð∓ ϕ=

ffiffiffi
3

p Þ,
where the minus sign is for fractionalized phases and the
plus for cohesive phases. This choice ensures that trans-
lation breaking is sufficiently irrelevant to not destabilize
the IR geometry. We omit the detailed accounting of gauge
invariant fluctuations which can be found, for instance,
in [61]. Due to the introduction of broken translations, we
confirm limω→0 ωIm½σ� ¼ ρs=μ (see also [62–64]) as in (8)
and find Γ ¼ m2sYðrhÞ=ð4π½μρn þ sT�Þ as follows from
[41], see Fig. 2. Furthermore, the temperature dependence
in Eqs. (15) and (16) does not change. In particular,
translation symmetry breaking does not necessarily give

rise to finite ρð0Þn in the cohesive phase. Instead, ρð0Þn is
controlled by the underlying criticality.
Low temperature behavior of hydrodynamic modes.—

Equation (16) has interesting consequences on the spec-
trum of hydrodynamic modes at low temperatures. The
superfluid second sound velocity is given by [29,44]

c22 ¼
�
s
ρ

�
2 ρs
ðsT þ μρnÞð∂½s=ρ�=∂TÞμ : ð18Þ

Using (16) and s ∼ Tðd−θÞ=z, we find c22 ¼ zc2IR=ðd − θÞ.
This is the generalization of Landau’s conjecture [65] to
critical IR geometries. For fractionalized phases, on the
other hand, we find c22 ∼ sT, which decays parametrically
faster with temperature than cIR when (17) holds. In both
cases, the superfluid sound velocity vanishes at T ¼ 0. This
is in marked contrast to the relativistic case z ¼ 1 and the

FIG. 1. Temperature dependence of ρn=ρ in the cohesive (left)
and fractionalized (right) phases.

FIG. 2. Varying depletion of spectral weight in the real part of
σðωÞ due to the superfluid in the presence of broken translations
(m=μ ¼ 10−2). Lower depletion is correlated with a larger ρð0Þn .
The curves are the real part of (8).
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superfluid effective field theory [23], which lead to a
nonvanishing T ¼ 0 superfluid velocity. We expect the
Goldstone mode should interpolate to a dispersion relation
ω ∼ kz in the limit T ≪ k. It would be interesting to work
this out in our model.
Fourth sound is defined as the sound mode which

propagates when the normal velocity vanishes [65],
given by

c24 ¼
ρs

μð∂ρ∂μÞs
≃
ρs
dρ

: ð19Þ

In the second equality, we have used the low temperature
behavior, ρ ∼ μd. Thus, the fourth sound provides a direct

measure of whether ρð0Þn ¼ 0, since then c24 ¼ 1=d. This
result explains some observations reported in previous
literature [44,66]. In dirty superfluids with broken trans-
lations, only the fourth sound survives. In particular, (19)
matches the expressions in [67]. Thus, measuring super-
fluid sound in impure, quantum critical superfluids would

give direct information on whether ρð0Þn ¼ 0 or not.
Discussion.—In this Letter, we have shown that a non-

vanishing ρð0Þn is consistent with the Landau-Tisza two-fluid
model of superfluidity. This is because in the absence of
external sources, fluctuations in the normal velocity are
aligned with fluctuations in the superfluid velocity,
μδui ¼ ∂iδφ. We illustrated this using a model of holo-

graphic superfluidity and showed that ρð0Þn is controlled by
the underlying quantum critical phase. Experimental evi-

dence for a nonvanishing ρð0Þn in the cuprates can be
considered further evidence for the existence of an under-
lying quantum critical phase in those systems. It would be
interesting to find more experimental examples of non-

vanishing ρð0Þn , perhaps in cold atom experiments, which we
expect would be a generic feature of quantum criticality.
The holographic models discussed here exhibit further

similarities to experimental observations in the cuprates.
In overdoped La2−xSrxCuO4, [68,69], heat capacity mea-
surements reveal a linear in temperature component at low
temperatures, c ∼ γ0T þOðT2Þ. The coefficient, γ0, is a
measure of the density of normal charge carriers and
exhibits strong doping dependence that is correlated with
strong depletion of spectral weight in the optical conduc-
tivity [12,15]. Interpreting a source for the dilaton, ϕs, as a
proxy for doping [70], our models exhibit the same
behavior, illustrated in Figs. 2 and 3. The rapid depletion
arises from the underlying quantum critical point separating
the cohesive phase in which γ0 ¼ 0 and the fractionalized
phase in which γ0 ≠ 0. As we have illustrated, this phase

transition also separates phases in which ρð0Þn does and does
not vanish. Together, these observations give further
evidence that a transition between two types of quantum
critical phases may explain the phenomenology in the
overdoped cuprates, see also [71–73].

As a final remark, we observe that in a Lifshitz quantum
critical fractionalized phase, our result (15) implies

ρs ≃ ρð0Þs þ #T1−θ=z. Setting θ ¼ 0, the superfluid density
displays a universal T-linear scaling for all z > 1. A similar
observation was reported by recent experiments in over-
doped La2−xSrxCuO4 [12]. For z ¼ 2, the heat capacity will
also receive a T-linear contribution. The value z ¼ 2 has
appeared previously in theoretical models of high Tc
superconductors, see, e.g., [74–76].
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