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The loss of criticality in the form of weak first-order transitions or the end of the conformal window in
gauge theories can be described as the merging of two fixed points that move to complex values of the
couplings. When the complex fixed points are close to the real axis, the system typically exhibits walking
behavior with Miransky (or Berezinsky-Kosterlitz-Thouless) scaling. We present a novel realization of
these phenomena at strong coupling by means of the gauge/gravity duality, and give evidence for the
conjectured existence of complex conformal field theories at the fixed points.
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Introduction.—Fixed-point annihilation (FPA) is an inter-
esting phenomenon in which two fixed points (FPs) of the
renormalization group (RG) flow merge and disappear as
some parameter is varied. In the context of phase transitions
and critical phenomena it is associated to a change from
continuous toweak first-order transitions. Examples include
the superconducting transition in the Abelian Higgs model
[1,2], the related Néel-valence bond-solid transition in
antiferromagnets [3–6], the ferromagnetic transition in the
Potts model [7–9], metal-Mott insulator transitions [10] and
six-dimensional OðNÞ models [11,12]. FPA has also been
associated to the boundaries of the conformal window in
gauge theories with flavors, both in (2þ 1)-dimensional
quantum electrodynamics [13–16] and in non-Abelian
gauge theories in 3þ 1 dimensions [17–21].
More generally, FPA has been proposed as a natural

mechanism to produce “walking behavior” in gauge theories
[22]. The idea is that, just after the merging, the critical
points leave a footprint in the form of approximate scale
invariance over a large range of scales. Typically the range
of the walking region increases exponentially as parameters
are tuned to the merging point, following Miransky (or
Berezinsky-Kosterlitz-Thouless) scaling [23–25]. This
behavior can be explained by continuing the theory to
complex values of the couplings, so that the annihilation
is understood as a migration of the FPs to the complex plane
after the merger [19]. Their effect on the RG flow is

noticeable as long as they remain close to the real axis. It
has been recently conjectured [22] that a nonunitary,
complex conformal field theory (CCFT) exists at each of
the two complex fixed points (CFPs), so that the properties
of the theory in the walking region can be derived from
perturbations of the CCFTs. Each CCFT has a complex
spectrum of operators that is the conjugate of its compan-
ion’s, implying that CFPs should always come in pairs.
Although FPA andCFPs are expected to exist generically,

their study has been mostly limited to weakly coupled
theories (see, e.g., [26–29] for recent examples), as their
identification requires computing the beta functions for the
different couplings in the theory, a task that often can only be
donevia perturbation theory. In this paperwewill construct a
simple holographic model that realizes FPA and CFPs, thus
showing that these phenomena can also occur at strong
coupling. In addition, our analysis provides nonperturbative
evidence that CFPs have the conjectured properties of
CCFTs regarding the spectrum of local operators.
Fixed-point annihilation and complex CFTs.—Consider

a system with a dimensionless coupling g whose β function
depends on an external parameter α in such a way that, for
α ≃ α�,

βðgÞ ≃ ðα − α�Þ − ðg − g�Þ2: ð1Þ
We will see an explicit example in the next section. If
α > α�, discarding higher-order terms, the β function
vanishes at two values

g� ¼ g� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α − α�

p
: ð2Þ

To make sure that the theory is well defined in the far
ultraviolet (UV) we may imagine that β has another zero at
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some g∞ < g−. Decreasing the control parameter α the FPs
g� approach each other until they merge at α ¼ α�. If we
decrease α further, βðgÞ loses these (real) zeroes and the
theory ceases to have a (real) conformal phase in the infrared
(IR). However, for jα − α�j sufficiently small, βðgÞ hasCFPs
close to the real axis at g� ¼ g� � i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α� − α

p
. In this regime

the theory exhibits approximate scale invariance between
UV and IR scales μUV and μIR defined by the values of the
coupling gUV ≲ g� ≲ gIR. The ratio between these two scales
becomes exponentially large as α approaches α� and shows
the characteristic Miransky scaling

log
μUV
μIR

¼
Z

gUV

gIR

dg
βðgÞ ≃

πffiffiffiffiffiffiffiffiffiffiffiffiffi
α� − α

p ; ð3Þ

where we assumed that jgIR;UV − g�j ≫ ffiffiffiffiffiffiffiffiffiffiffiffiffi
α� − α

p
. Thus if

jα − α�j is small then the RG flow is slow in a large energy
range, hence the term “walking” flow.
The scenario conjectured in [9,22] is that CFPs corre-

spond to pairs of nonunitary CCFTs that control the
walking flow, which passes precisely in between them.
Each CCFT should have operators of complex dimensions
in the spectrum that are not matched by other operators with
complex conjugate dimension in the same theory. Instead,
the missing operators of complex conjugate dimensions in
one CCFT should be part of the spectrum of the companion
CCFT. Thus in this sense the two CCFTs are complex
conjugates of one another.
An important case is the operator associated to the

coupling g itself, whose complex dimensions at each CFP,

Δ� ¼ dþ β0ðg�Þ ≃ d ∓ 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α� − α

p
; ð4Þ

with d as the spacetime dimension, are indeed complex
conjugates of one another. Moreover, this operator is close
to marginality when α ≲ α�, with the leading deviation
being imaginary and small. Using this, the hierarchy (3) can
be rewritten as

log
μUV
μIR

≃
2π

jImΔj : ð5Þ

Holographic realization.—Previous holographic realiza-
tions of walking behavior with Miransky-like scaling in
gravity duals [19,30–33] are based on flows where the mass
of a scalar field on the gravity side violates the
Breitenlohner-Freedman (BF) bound [34]. In these cases
there is a real FP that becomes dynamically unstable but no
CFPs have been identified. We will present a different
construction in which both FPA and the resulting CFPs are
explicitly realized.
Couplings of the gauge theory are holographically dual

to fields on the gravity side. For simplicity we focus on a
single coupling dual to a scalar field. The action on the
gravity side is thus

S ¼ 1

2κ2

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�
: ð6Þ

For each critical point ϕc of the potential with VðϕcÞ < 0
there is an anti–de Sitter (AdS) solution with its correspond-
ing d-dimensional CFT dual. We choose to write V in terms
of a (fake) superpotential W through the usual relation

V ¼ ðd − 1Þ
�
2ðd − 1Þ

�
dW
dϕ

�
2

− dW2

�
: ð7Þ

The only reason for this is to simplify the presentation. In
particular, this choice implies nothing regarding the pos-
sible presence of supersymmetry in the system. Critical
points ofW are also critical points of V (but not viceversa).
Since we wish to model three FPs we take a superpotential
with derivative

dW
dϕ

¼ W0

L
ϕðϕ − ϕ0Þðϕ − ϕ̄0Þ: ð8Þ

The resulting potential is shown in Fig. 1. The UV FP dual
to the AdS solution at ϕ ¼ 0 is the analog of the FP at
g ¼ g∞ in the previous section. The constants ϕ0 and ϕ̄0 are
parameters of the model analogous to α. If both ϕ0 and ϕ̄0

are real then there are two additional real FPs at ϕ ¼ ϕ0 and
ϕ ¼ ϕ̄0, in analogy with g ¼ g� in the previous section.
When ϕ0 ¼ ϕ̄0 these FPs merge into a single one. If ϕ0 and
ϕ̄0 become complex then they must be conjugate to one
another since W must be real for real ϕ. In this case the
potential looses two real critical points, giving a holo-
graphic realization of FPA [37].
At the UV FP the AdS radius is fixed by the integration

constant Wð0Þ ¼ 1=L, while the dimension ΔUV of
the operator O dual to ϕ is determined by W0 ¼
δUV=½2ðd − 1Þϕ0ϕ̄0� > 0. There are two possible choices
depending on whether the flow is triggered by a source for

FIG. 1. Potential of our model for the cases fϕ0 ¼ 0.8;
ϕ̄0 ¼ 1.2g (top curve), fϕ0 ¼ ϕ̄0 ¼ 1g (middle curve), and
fϕ0 ¼ ϕ̄�

0 ¼ 1þ 0.2ig (bottom curve).
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O, in which case δUV ¼ d − ΔUV, or by a nonzero expect-
ation value for O, in which case δUV ¼ ΔUV.
Expanding the superpotential around ϕ ¼ ϕ0 we get

WðϕÞ ¼ 1

L0

þ δ0
4ðd − 1ÞL0

ðϕ − ϕ0Þ2 þOðϕ − ϕ0Þ3; ð9Þ

where

L0 ¼ L

�
1þW0

6

�
ϕ3
0ϕ̄0 −

ϕ4
0

2

��−1
ð10Þ

is the AdS radius at ϕ ¼ ϕ0 and

δ0¼ 2ðd−1ÞW0

L0

L
ϕ0ðϕ0− ϕ̄0Þ¼ δUV

L0

L
ðϕ0− ϕ̄0Þ

ϕ̄0

: ð11Þ

The expansion around ϕ̄0 gives analogous results with the
replacements fϕ0;ϕ̄0;L0;δ0g→fϕ̄0;ϕ0;L̄0; δ̄0g. Assuming
0 < ϕ0 ≲ ϕ̄0 we have that

δ0 < 0; 0 < δ̄0 <
d
2
− 1: ð12Þ

In this case ϕ̄0 corresponds to an UV FP deformed by a
relevant scalar operator of dimension Δ̄0 ¼ d − δ̄0, whereas
ϕ0 corresponds to an IR FP deformed by an irrelevant scalar
operator of dimensionΔ0 ¼ d − δ0. When ϕ0 ¼ ϕ̄0 the two
points merge and the dual operator becomes marginal.
Complex FPs and RG flows: In the so-called domain

wall coordinates in which the metric takes the form

ds2dþ1 ¼ gMNdxMdxN ¼ e2AðρÞdx21;d−1 þ dρ2 ð13Þ

the solution is determined by the equations

dA
dρ

¼ W;
dϕ
dρ

¼ −2ðd − 1Þ dW
dϕ

: ð14Þ

In these coordinates the metric is foliated by copies of
d-dimensional Minkowski space with scale factor eAðρÞ,
which is therefore interpreted as dual to the RG scale in the
gauge theory. Similarly, the scalar field ϕ ¼ ϕðρÞ is dual to
a running coupling constant in a particular scheme, whose β
function is therefore (see, e.g., [38])

βðϕÞ ¼ dϕ
dA

¼ −2ðd − 1Þ d logW
dϕ

: ð15Þ

Close to any of the three real FPs ϕc ¼ f0;ϕ0; ϕ̄0g one
finds the expected behavior

ϕ ≃ gce−ðd−ΔcÞρ=Lc ; AðρÞ ≃ ρ

Lc
∼ log

μ

Λc
; ð16Þ

and

βðϕÞ ≃ −ðd − ΔcÞðϕ − ϕcÞ þO½ðϕ − ϕcÞ2�; ð17Þ

where μ is the RG scale, Λc is the scale that triggers the
flow away or into the FP, and gc is the corresponding
(dimensionless) coupling at the FP. UV and IR FPs are
approached for ρ → ∞ and ρ → −∞, respectively. The β
functions for our model are shown in Fig. 2, where we see
that they exhibit the behavior discussed in the previous
section.
Since the scalar field is dual to the coupling constant in

the gauge theory, we propose that the holographic dual of
the extension of this coupling to complex values consists of
extending the scalar field on the gravity side to complex
values as well. Since the scalar field couples to the metric,
we also extend the metric components to complex values.
We assume that, in this extension, the action (6) is a
holomorphic function of gMN and ϕ. In other words, we do
not introduce any explicit dependence on the complex
conjugates of these fields in the action. Put yet another way,
the equations of motion are obtained by varying the action
with respect to ϕ and gMN as complex variables, as opposed
to varying independently with respect to their real and
imaginary parts.
With this extension, the FPs do not disappear at ϕ̄0 ¼ ϕ0

but simply move to the complex-ϕ plane. The dimensions
of the operators dual to the scalar field at each CFP (11) are
complex conjugate of one another, Δ̄0 ¼ Δ�

0. In addition,
there are formally AdS solutions with metrics gMN ¼
fhMN; h̄MNg whose complex radii (10) are also complex
conjugates, L̄0 ¼ L�

0. Since we assume that the coordinates
are real, this relates the two metrics by complex conjuga-
tion h̄MN ¼ h�MN . Accordingly, any quantities that can be
computed holographically at the CFPs purely in terms of
geometric quantities will be related by complex conjuga-
tion. These include the expectation value of Wilson loops
[39,40], the entanglement entropy [41], and holographic c

FIG. 2. β functions associated to each of the three potentials of
Fig. 1, as defined in (15). The arrows indicate the direction of the
RG flow from the UV to the IR.
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functions [42] that are related to central charges and
anomaly coefficients.
This result extends to complex RG flows between the UV

FP at ϕ ¼ 0 and the CFPs. Once we continue the scalar to
complex values, the first-order equations (14) split into real
and imaginary parts, and the solutions describe the RG flow
of the real and imaginary parts of the dual coupling. The
scalar field still approaches the CFPs as given by the first
equation in (16). Since both Δc and Lc are complex the
coupling oscillates. In the particular example of Fig. 3 the
CFPs are IR FPs but this is not generic; i.e., CFPs can also be
UV FPs. The only purely real flow is the straight horizontal
line that passes exactly in between the CFPs and should
exhibit walking behavior. We have collected some explicit
formulas for the flows in the Supplemental Material [43].
Holographic complex conformal field theories: The

holographic CFPs show many of the properties expected
for a pair of CCFTs. In addition to the operator dual to ϕ,
we will show that the spectrum of dimensions of local
operators at one CFP is the complex conjugate of its
companion’s. Let XI denote the real components of a field
in an arbitrary Lorentz representation. Then the action
expanded to quadratic order around a CFP at ϕc ¼
fϕ0; ϕ̄0g, hc ¼ fh; h̄g will be

Lc ≃ −
ffiffiffiffiffiffiffiffi
−hc

p �
1

2
XIKcIJXJ þ 1

2
M2

cIJX
IXJ

�
; ð18Þ

where we have separated a kinetic part determined by a
differential operator KcIJ ¼ KIJðhc;ϕcÞ ¼ fKIJ; K̄IJg and
a mass termM2

cIJ ¼ M2
IJðhc;ϕcÞ ¼ fM2

IJ; M̄
2
IJg. This gives

the field equations

KcIJXJ
c þM2

cIJX
J
c ¼ 0: ð19Þ

The general solution near the AdS boundary will be a
superposition of exponentials of the form [44]

XI
c ¼

X
n

aIcne−Δcnρ=Lc þ bIcne−ðd−ΔcnÞρ=Lc : ð20Þ

Introducing this in (19) one finds a homogeneous system of
equations for the coefficients aIcn, bIcn that has solutions
when Δcn ¼ fΔn; Δ̄ng take the values corresponding to the
conformal dimensions of the dual operators Ocn ¼
fOn; Ōng. We can now use holomorphicity of the action
to show that

K̄ ¼ Kðh̄; ϕ̄0Þ ¼ Kðh�;ϕ�
0Þ ¼ ½Kðh;ϕ0Þ�� ¼ ðKÞ�; ð21Þ

and, similarly, that M̄2 ¼ ðM2Þ�, where we have suppressed
the IJ indices for simplicity. This implies that the spectra of
operators at the two CFPs are related by complex con-
jugation, as anticipated:

Δ̄n ¼ Δ�
n: ð22Þ

Walking behavior and Miransky scaling: Our simple
holographic model correctly describes the physics of
walking and the associated Miransky scaling when the
CFPs are close to the real axis. In particular, the β function
(15) reproduces (3). Wewill illustrate this scaling further by
heating up the real RG flow that passes exactly in between
the CFPs in Fig. 3. On the gravity side this corresponds to
constructing black hole solutions that start in the UV as
deformations of a d ¼ 4 CFT by a ΔUV ¼ 3 operator with
source Λ. We set ϕ0 ¼ 1þ iϵ and construct solutions for
several small values of ϵ, following the procedure described
in [45]. Some explicit technical details can be found in the
Supplemental Material [43].
At very high temperature the thermodynamics is domi-

nated by the physics of the UV CFT, hence SUV ∝ T3. In a
region with walking the entropy would show a similar
temperature scaling, so S=SUV should be approximately
constant. This plateaux can be clearly seen in the log-linear
plot of Fig. 4. To quantify the size of the plateaux, we
declare that the flow is in the walking region if the

FIG. 3. Examples of complex RG flows for d ¼ 4 displaying
the characteristic spiraling behavior around the CFPs. The flow in
the UV is triggered by a source for a ΔUV ¼ 3 operator and the
CFPs are located at ϕ0 ¼ ϕ̄�

0 ¼ 1þ 0.2i.

FIG. 4. Log-linear plots of the entropy density S as a function of
the temperature T, normalized to that of the UV CFT, for different
values of ϕ0 ¼ 1þ iϵ.
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following derivative is smaller than a certain control
parameter ν

d logðS=SUVÞ
d logðT=ΛÞ < ν: ð23Þ

For definiteness we take ν ¼ 1
2
10−3. The condition is

satisfied for values of the temperature in a bounded range
TUV > T > TIR. We identify these temperatures with the
energy scales μUV and μIR. We then vary ϵ and plot the ratio
of these scales as a function of the imaginary part of the
scaling dimensionΔ0 at the CFP. The result is Fig. 5, which
exhibits the expected scaling (5).
Discussion.—The simple holographic model that we

have presented captures the physics of FPA. Continuing
the scalar field to complex values in such a way that the
action remains holomorphic, it is also possible to describe
CFPs. Then a straightforward extension of the rules of the
gauge/gravity duality allows us to study not only the
properties of conjectured CCFTs at strong coupling but
also the complex RG flows between them. When the CFP
are close to the real axis the real RG flow that passes
exactly between them walks and displays the associated
Miransky scaling behavior.
The holomorphic gravitational action defined in this way

is complex and non-Hermitian, so its meaning beyond the
classical level is unclear. It would be nice to relate our
proposal to those in [46,47], where it was argued that
complex saddle points may give important contributions to
the path integral in particular cases.
Our work shows that, contrary to some belief in the

community, the RG flow leading to FPA in large-Nc theories
may be driven by a single-trace operator, the operator dual to
the scalar field. Our model avoids the argument in
AppendixD of [22] because the coupling constant associated
to this operator is O(Nc) instead of O(1).
Our construction is based on a bottom-up model. It

would be interesting to find top-down, string theory
realizations of FPA and CFPs. While the scalar potentials

obtained in consistent truncations of string and M theory
generically possess CFPs, an open question is whether their
distance to the real axis is controlled by some parameter
that can be freely varied. This issue is currently under
investigation.
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