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We demonstrate analytically and verify numerically that the out-of-time order correlator is given by the
thermal average of Loschmidt echo signals. This provides a direct link between the out-of-time-order
correlator—a recently suggested measure of information scrambling in quantum chaotic systems—and the
Loschmidt echo, a well-appreciated familiar diagnostic that captures the dynamical aspect of chaotic
behavior in the time domain, and is accessible to experimental studies.
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Introduction.—The study of the quantum version of
classically chaotic systems gave rise to the field of quantum
chaos, since it was realized that quantum chaotic systems
share certain common characteristics [1,2]. In particular, in
spite of the absence of the telltale exponential sensitivity to
initial conditions in unitary quantum evolution, one can use
as a quantum diagnostic of chaos sensitivity of the
evolution to small perturbations of the Hamiltonian [3]
or its entropy production in the presence of coupling to the
environment [4,5]. These and related manifestations of
quantum chaos have been by now widely studied [6–13],
using diagnostics such as Loschmidt echo (LE) [14,15]:

MðtÞ≡ jhψ jeiH0te−iðH0þVÞtjψij2: ð1Þ

This quantity incorporates the simple idea [3] that small
perturbations of the Hamiltonian may trigger dramatic
changes of the dynamics, inducing the butterfly effect.
More recently, the out-of-time-order correlator (OTOC)

[16,17], another diagnostic for quantum chaos, has been
proposed and received considerable attention across many
different fields in physics, including quantum information
and high-energy and condensed matter physics [18–41].
The OTOC is defined as a four-point correlator with
unusual time ordering:

FβðtÞ≡ hA†ðtÞB†AðtÞBiβ; ð2Þ

where A and B are typically chosen as local operators;
AðtÞ ¼ eiHtAe−iHt is the Heisenberg operator evolving
under total Hamiltonian H and the average hi is taken
over a thermal state at the inverse temperature β. In chaotic
systems, the OTOC exhibits fast decay and converges to a
persistent small value [17]. It was argued that, under certain
natural assumptions, the exponential decay rate is bounded
by λ ≤ 2π=β [24,27]. Another benefit of the OTOC is that it
is designed to probe the spreading of local information over

the entire system. Moreover, for systems with spatial
structures, information measured by the OTOC propagates
ballistically with a finite velocity known as the butterfly
velocity [23,37,38].
The OTOC is typically understood as an intrinsic echo-

type quantity. For instance, when A and B are chosen as
unitary operators, Eq. (2) can be directly measured by echo
experiments [13,42–45]. There are efforts to build more
direct links between these two quantities, e.g., using
variants of the OTOC and LE or particular choices of
operators for the OTOC evaluation [46–48]. However, the
precise quantitative equivalence between the OTOC and the
Loschmidt echo is still missing. Establishing such a relation
would be beneficial for both areas and shed new light on the
whole field of quantum chaos.
In this work, we accomplish the task of connecting the

OTOC to the Loschmidt echo. We shall focus on the
temporal decay of the OTOC without extra complications
caused by spatial propagation. We demonstrate that the
OTOC equals the thermal average of the Loschmidt echo.
The coupling between the target local systems, i.e., the
supports of the local operators, and the rest of the total
system plays the role of a perturbation. To further support
our theory, we present two model studies involving coupled
inverted harmonic oscillators and a random matrix model.
Bridging the out-of-time-order correlator and Loschmidt

echo.—For a chaotic Hamiltonian, the universal decay of
the OTOC is insensitive to the form of operators A and B in
Eq. (2), as long as they are generic, i.e., not reflecting the
particular symmetries possessed by the Hamiltonian. Any
generic choice of local operators, e.g., random operators, is
representative for the universal decay of the OTOC. This
allows us to look at the typical behavior of the OTOC by
averaging all unitary operators on subsystem SA and SB:

FβðtÞ≡
Z

dAdBFβðtÞ; ð3Þ
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where the integration is performed with respect to the Haar
measure for unitary operators. Similar ideas have been
considered in the literature [49–52]. Here, we will assume
that A and B are supported on distinct local subsystems. For
global operators, the OTOC has been shown to be closely
related to the spectral form factor of the Hamiltonian
[50,51,53]. As will be seen in the following, taking into
account the local structure of the system is crucial to reveal
the correct behavior of the OTOC.
For simplicity, we focus on the OTOC at an infinite

temperature (β ¼ 0). It is straightforward to generalize to a
finite temperature by distributing the thermal density
operator over a thermal loop, e.g., using the scheme
described in Refs. [24,27,50]. The finite-temperature cor-
rection will be taken into account when discussing the
temperature dependence of the decay rate.
We focus on the scenario thatA is an operatorwith support

on a small local subsystem SA, while operator B is chosen
such that its support SB is the complement of SA, as
illustrated in Fig. 1. It is reasonable to expect that choosing
operator B in such a manner also captures the spreading of
operator A over the entire system, detected by its nonzero
projection at later times on the support of operatorB, at least
in the bulk of the decay.Analysis of this particular scenario is
also instructive and can be generalized in a similar way to
cases where B is a small local operator as well.
The Haar integral over subsystem operators can be

evaluated with the aid of the formula

Z
dAA†OA ¼ 1

dA
IA ⊗ trAðOÞ; ð4Þ

where IA is the identity operator and trA is the partial trace
over subsystem SA. The Haar measure is unique up to a
constant multiplicative factor. Here, dA, the dimension of
SA, is introduced as a convention to normalize the OTOC
[54]. The proof of the above equation is given in
Appendix A of Supplemental Material [55].
The average over all random unitary operators on

subsystem SA gives us

Z
dAFβ¼0ðtÞ≡ 1

d

Z
dAtr½A†ðtÞB†AðtÞB�

¼ 1

d
1

dA
tr½IA ⊗ trAðe−iHtB†eiHtÞe−iHtBeiHt�

¼ 1

d
1

dA
trB½trAðe−iHtB†eiHtÞtrAðe−iHtBeiHtÞ�:

ð5Þ

The last line of the above equation involves the reduced
dynamics of operator B, i.e., Bð−tÞ≡ trAðe−iHtBeiHtÞ. In
order to further perform the average over B, we estimate
Bð−tÞ in the following way. The total system Hamiltonian,
in general, has the structure

H ¼ IA ⊗ HB þHA ⊗ IB þH0;

H0 ≡ δ
X
k

Vk
A ⊗ Vk

B: ð6Þ

Here Vk
A’s are Hermitian and orthonormal (with respect to

the Hilbert-Schmidt inner product and norm); Vk
B’s are

Hermitian and orthogonal and have norms on the same
order as HB, such that δ quantifies the relative strength of
the coupling. In realistic physical systems, the coupling
parameter δ ≪ 1. To get the solution of Bð−tÞ, we replace
the effect of the coupling with an ensemble of random
noises fVαg on subsystem SB, namely,

Bð−tÞ ¼ trAðe−iHtBeiHtÞ
∝ e−iðHBþVαÞtBeiðHBþVαÞt: ð7Þ

Here α labels different realizations of the noise, and the
average taken is over all realizations of the noise oper-
ator Vα’s.
The above claim is based on the correspondence between

the symptoms of decoherence [56,57] (process that
involves entangling correlations between the system and
the environment) and symptoms of the suitable external
noises. In Appendix B of Supplemental Material [55], we
back up this claim with a more mathematically rigorous
treatment of the noise operators in terms of master
equations up to the second order of the coupling parameter
δ [58], where it is shown that the noise operators can be
chosen as linear combinations of Vk

B ’s with random
coefficients �1:

FIG. 1. An illustration of the system structure under consid-
eration. SA is a small local subsystem. SB is chosen as the
complement of SA. (Left) A local perturbation on subsystem SA
spreads over the entire system during time evolution. This can be
captured by the decay of OTOC in Eq. (2). (Right) The large
subsystem SB feels an effective random stochastic perturbation V
induced by the interaction with the small subsystem SA. Due to
this effective perturbation, the dynamics of SB becomes irrevers-
ible. This can be detected by the Loschmidt echo signal in Eq. (1).
These two processes are shown to be related through the OTOC-
LE correspondence in Eq. (9). Since SA is small and local, one
can effectively treat SB as the total system.
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Vα ¼
X
k

� δVk
B: ð8Þ

With the aid of the alternative form for the reduced
dynamics for Bð−tÞ in Eq. (7), averaging over operators B
can be further performed in the same manner as for the
operators A. This gives the final expression for the averaged
OTOC:

Fβ¼0ðtÞ ≈ jheiðHBþVαÞte−iðHBþVα0 Þtiβ¼0j2: ð9aÞ

Here, Vα and Vα0 average over all realizations of the noise
operators as given by Eq. (8). Each term in the average is
precisely the Loschmidt echo averaged over a thermal
ensemble. For systems with large number of degrees of
freedom, the ensemble of noises is large, and the structures
of the noise operators are expected to be not essential. In this
case, one can replace the noise average with a single LE to
get a coarse-grained version of the above equation, namely,

Fβ¼0ðtÞ ≈ jheiðHBþV1Þte−iðHBþV2Þtiβ¼0j2: ð9bÞ

Equation (9) is the main result of this work. Note that:
(i) As has been mentioned before, the above result general-
izes to finite temperatures. We present the full derivation in
Appendix C of Supplemental Material [55], using the same
scheme for regularizing the thermal state explored in
Refs. [24,27,50]. This regularization scheme is crucial
for the discussion of the bound of the OTOC decay
[59]. (ii) The perturbations that appear in the LE emerge
from the interactions nested in the total Hamiltonian.
(iii) The OTOC has several decay regimes, e.g., the early
growth ∼a − ϵbeλt þOðϵ2Þ before the scrambling
(Ehrenfest) timescale [24], where a and b are order-1
numbers and ϵ ≪ 1 is a small parameter; or the inter-
mediate pure exponential decay. The only approximation
involved in the derivation of Eq. (9) is the second-order
approximation of the coupling parameter δ. It will be shown
in the following that the OTOC-LE connection holds in
both the scrambling and intermediate decay regimes.
Remarkably, the second order of the coupling parameter
δ2 is identified as the small prefactor ϵ in the early
exponential growth, which determines the scrambling
timescale ∼ð1=λÞ lnð1=ϵÞ.
Case I: Early scrambling.—To verify the OTOC-LE

relation in the scrambling regime, we first study an exactly
solvable model consisting of two coupled inverted har-
monic oscillators (IHOs), whose Hamiltonian is

X
i¼1;2

�
1

2mi
p̂2
i −

miω
2
i

2
x̂2i

�
þ δx̂1x̂2: ð10Þ

This model employs IHOs, as they were first used to
emulate dynamical instability characteristic of quantum
chaos in an exactly solvable system [60]. Their role here is

to capture the essential ingredients of the OTOC-LE
relation: The OTOC is computed for two (local) operators
on the two oscillators, respectively. The parameters are
tuned as m1 ≫ m2, ω1 ≪ ω2, and δ ≪ 1 such that the
dynamics of the first oscillator is much slower than the
second one and the coupling is weak. Hence, oscillator 1
and 2 mimic the subsystems SA and SB, respectively.
Since the spectrum of the IHOs is not bounded from

below, the thermal state is not well defined. We replace the
regularized thermal state with a pure state jψ1ðx1Þijψ2ðx2Þi.
The pure state average of the OTOC has been considered in
the literature [43]. In this case, the Haar averaged OTOC of
the two coupled oscillators can be computed exactly. We
depict the result in Fig. 2 and delegate the lengthy calcu-
lation to Supplemental Material [55], where it is shown that
the pure state average carries out in the same manner as a
thermal ensemble.
According to Eq. (9), the OTOC equals the LE of the

second oscillator (the large subsystem SB), which admits an
exact solution as well. The perturbations emerging from the
coupling are �δc1x̂2 with equal probability, where
c21 ¼ hψ1jx21jψ1i. Note that the average of x21 appears
because of the normalization condition in the decomposi-
tion of the interaction in Eq. (6). See details about the
derivation of the perturbation operators in Ref. [55]. As a
simple system, the coupled IHO has only one noise
operator. Thus, the coarse-grained version of the OTOC-
LE connection in Eq. (9b) is not reliable. We instead
explicitly use the exact form in Eq. (9a), the right-hand side
of which reduces to

MðtÞ ¼ 1

2
þ 1

2
jhψ2jeiðH2þδc1x̂2Þte−iðH2−δc1x̂2Þtjψ2ij2: ð11Þ

FIG. 2. Early exponential growth of the OTOC and LE of the
IHOs. The average of the OTOC is taken over a pure product state
ψðx1Þψðx1Þ ∝ e−x

2
1
=m2e−x

2
2
=m1 . The parameters are m1 ¼ 105,

m2 ¼ 1, ω1 ¼ 0, ω2 ¼ 1, and δ ¼ 10−5. The solid blue and
red curves correspond to 1 − FðtÞ and 1 −M1ðtÞ, respectively.
The dashed and solid black curves correspond to
2δ2c21c

2
2j sinðitÞj2 and 4δ2c21c

2
2j sinðitÞj2, respectively, as deduced

from Eq. (12).
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Denote M1ðtÞ≡ jhψ jeiðH2þδc1x̂2Þte−iðH2−δc1x̂2Þtjψij2. To
extract the early exponential growth, consider the quantity
1 − FðtÞ ≈ 1 −MðtÞ ¼ 1

2
(1 −M1ðtÞ). This implies that, in

the early growth regime, the averaged OTOC FðtÞ has the
same exponential growth rate asM1ðtÞ, but a prefactor half
of the latter. Note that the growth of the LE MðtÞ does not
saturate to one. The reason is that the OTOC-LE connection
is exact up to second order of the coupling parameter δ. As
will be demonstrated in the following, δ2 plays the role of
the prefactor ϵ of the OTOC early growth ∼ϵeλt, which is
precisely reflected in the early growth of the LE. The
saturation of the OTOC is induced by higher orders of ϵ.
To see the significance of the coupling strength, we

expand M1ðtÞ to second order of δ using the Baker-
Campbell-Hausdorff (BCH) formula, which gives

M1ðtÞ ¼ 1 − δ2
4c21c

2
2

ðiω2Þ2
sin2 ðiω2tÞ; ð12Þ

where c22 ¼ hψ2jx22jψ2i. This describes an exponential
Lyapunov growth with rate 2ω2. The second order of
the coupling parameter plays the role of the prefactor in the
early exponential growth. Derivations for the exact solution
of M1ðtÞ and its second-order BCH expansion are pre-
sented in Ref. [55]. Figure 2 depicts the exact solutions of
the Haar averaged OTOC M1ðtÞ as well as the exponential
growth extracted from the second-order expansion in
Eq. (12). The OTOC-LE connection and the early scram-
bling are clearly revealed.
Case II: Intermediate decay.—The early exponential

growth of the OTOC has been predicted and observed in
various platforms (See discussion in Ref. [61] and the
references therein). However, in a variety of systems,
especially finite-size lattice systems, the scrambling time
is typically too small to be reliably visible. Instead, the
decay of the OTOC is a pure exponential. To reveal the
OTOC-LE relation in such an intermediate decay regime,
we study a random matrix model. The model Hamiltonian
takes the general form Eq. (6). The noninteracting part of
the Hamiltonian are random matrices from the standard
Gaussian unitary ensemble (GUE), whose matrix elements
have independent real and imaginary parts as Gaussian
random numbers with zero mean and unit variance. The
small subsystem SA is chosen as a single qubit. The
coupling matrix Vk

A in the decomposition Eq. (6) are
chosen as Pauli matrices, i.e., fI; σx; σy; σzg, while Vk

B
on the large subsystem SB are drawn from the GUE.
The random matrix model has enough complexity

to make the OTOC insensitive to the choice of operators.
This allows us to numerically simulate the evolution of
the OTOC for two random Hermitian operators on the
corresponding subsystems. The LE can be computed using
the coarse-grained version of the OTOC-LE relation in
Eq. (9b). The effective perturbation operators, by Eq. (8),

are the sum of four random matrices from the GUE and,
therefore, have matrix elements with variance 4δ2.
It is well known that in the intermediate regime the decay

of the LEdepends on the strength of the perturbation; i.e., for
small perturbations the decay is exponential, while for large
perturbations the decay can be Gaussian. Since the relative
coupling strength decreases with the system size, exponen-
tial decays are typically expected in the thermodynamics
limit. However, for small size systems, Gaussian decays
might be observed. This explains the Gaussian decay of the
OTOC in finite-size systems, e.g., the Sachdev-Ye-Kitaev
(SYK) model [17,62,63], for which in the large-N limit the
OTOC switches from an early growth to an intermediate
exponential decay. As another application of our theory, we
present a detailed discussion of the SYKmodel in Ref. [55].
The numerical simulations for the random matrix model

are presented in Fig. 3, where the OTOC and LE are shown
to match very well; both exponential and Gaussian decays
are revealed.
The bound on chaos.—In the scrambling regime, the

early exponential growth rate was conjectured to be
universally bounded by the temperature, λ ≤ 2π=β. This
conjecture has been proven under a strong physical
assumption that the time-ordered correlators factorize.
As a consequence of that assumption, the magnitude of
the normalized OTOC is always bounded by unity in the
analytic regime on the complex time domain (see
Refs. [24,27] for detailed discussions). As another remark-
able application of the OTOC-LE connection, we note that
the factorization assumption can be removed for the Haar
averaged OTOC, which is attributed to the fact that, in the
corresponding complex time domain, the LE appears to be
averaged over a thermal state with a positive effective

FIG. 3. Numerical simulations of the OTOC and LE for the
random matrix model. The Hilbert space dimensions of sub-
system SA and SB are 2 and 29, respectively. Red and blue marks
correspond to data of the OTOC and LE, respectively. In the main
figure, the coupling parameter is fixed at δ ¼ 0.1, for which the
decay is exponential. Triangles and squares correspond to β ¼ 0
and 0.1, respectively. Inset: Gaussian decay of the OTOC and LE
at coupling strength δ ¼ 0.5. The temperature is fixed at infinity.
Black lines are best fits to exponential or Gaussian curves.
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temperature. We refer the interested reader to Ref. [55] for a
detailed discussion.
Summary.—We have demonstrated the connection

between two distinct areas of the dynamical quantum
chaos, namely, the emerging field of the out-of-time-order
correlators and the relatively more developed field of the
Loschmidt echo. This relation not only allows a more
general understanding of the universal properties of the
OTOC but also provides new insights into both subjects.
Two models were used to reveal the OTOC-LE relation in
the scrambling regime and the intermediate exponential
decay regime. Implications to the bound on the decay rate
were also discussed. Future research could generalize the
connection to higher-dimensional systems with spatial
structures.
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